{"title":"可靠性分析中人工神经网络模型的稳健损失函数研究","authors":"Wu Zonghui , He Jian , Sun Xiaodan","doi":"10.1016/j.prostr.2023.12.021","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a robust artificial neural network (ANN) loss function in solving samples with questionable data. The Latin hypercube sampling and the uniform experimental design are used as sample generation while ANN with various loss functions is the limit state function approaching method and Monte Carlo simulation is the failure probability computing technique. A marine lubricating oil cooler under a plus-minus triangular wave and internal pressure (1Mpa) is considered as representative of the dynamic implicit model. Three kinds of questionable data are considered: tiny vibrations(±<em>δ</em><sub>1</sub>) caused by the surrounding environment, small deviations caused by equipment error(±<em>δ</em><sub>2</sub>), and large deviations(±Δ) caused by accidental events. And two small probability events are considered: 1. Surrounding error + positive equipment error + a large shock (±Δ) in partial samples; 2. Surrounding error + negative equipment error + a large shock (±Δ) in partial samples. ANN with advanced loss function performs better than traditional loss function in dealing with samples including incorrect data.</p></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452321623007199/pdf?md5=7e7baf08c89cb7c9d79f01df3036745e&pid=1-s2.0-S2452321623007199-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Study on Robust Loss Function for Artificial Neural Networks Models in Reliability Analysis\",\"authors\":\"Wu Zonghui , He Jian , Sun Xiaodan\",\"doi\":\"10.1016/j.prostr.2023.12.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a robust artificial neural network (ANN) loss function in solving samples with questionable data. The Latin hypercube sampling and the uniform experimental design are used as sample generation while ANN with various loss functions is the limit state function approaching method and Monte Carlo simulation is the failure probability computing technique. A marine lubricating oil cooler under a plus-minus triangular wave and internal pressure (1Mpa) is considered as representative of the dynamic implicit model. Three kinds of questionable data are considered: tiny vibrations(±<em>δ</em><sub>1</sub>) caused by the surrounding environment, small deviations caused by equipment error(±<em>δ</em><sub>2</sub>), and large deviations(±Δ) caused by accidental events. And two small probability events are considered: 1. Surrounding error + positive equipment error + a large shock (±Δ) in partial samples; 2. Surrounding error + negative equipment error + a large shock (±Δ) in partial samples. ANN with advanced loss function performs better than traditional loss function in dealing with samples including incorrect data.</p></div>\",\"PeriodicalId\":20518,\"journal\":{\"name\":\"Procedia Structural Integrity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452321623007199/pdf?md5=7e7baf08c89cb7c9d79f01df3036745e&pid=1-s2.0-S2452321623007199-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452321623007199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321623007199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种稳健的人工神经网络(ANN)损失函数,用于解决有疑问数据的样本问题。本文采用拉丁超立方采样和均匀试验设计作为样本生成方法,以具有各种损失函数的 ANN 作为极限状态函数逼近方法,以蒙特卡罗模拟作为失效概率计算技术。动态隐式模型以正负三角波和内部压力(1Mpa)下的船用润滑油冷却器为代表。考虑了三种可疑数据:由周围环境引起的微小振动(±δ1)、由设备误差引起的小偏差(±δ2)和由意外事件引起的大偏差(±Δ)。并考虑了两种小概率事件:1.周围误差 + 设备正误差 + 部分样本中的大冲击(±Δ);2.周围误差 + 设备负误差 + 部分样本中的大冲击(±Δ)。在处理包含错误数据的样本时,具有高级损失函数的 ANN 比传统损失函数表现更好。
Study on Robust Loss Function for Artificial Neural Networks Models in Reliability Analysis
This paper presents a robust artificial neural network (ANN) loss function in solving samples with questionable data. The Latin hypercube sampling and the uniform experimental design are used as sample generation while ANN with various loss functions is the limit state function approaching method and Monte Carlo simulation is the failure probability computing technique. A marine lubricating oil cooler under a plus-minus triangular wave and internal pressure (1Mpa) is considered as representative of the dynamic implicit model. Three kinds of questionable data are considered: tiny vibrations(±δ1) caused by the surrounding environment, small deviations caused by equipment error(±δ2), and large deviations(±Δ) caused by accidental events. And two small probability events are considered: 1. Surrounding error + positive equipment error + a large shock (±Δ) in partial samples; 2. Surrounding error + negative equipment error + a large shock (±Δ) in partial samples. ANN with advanced loss function performs better than traditional loss function in dealing with samples including incorrect data.