用于分析足底压力的人工神经网络技术系统综述

IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Chongguang Wang , Kerrie Evans , Dean Hartley , Scott Morrison , Martin Veidt , Gui Wang
{"title":"用于分析足底压力的人工神经网络技术系统综述","authors":"Chongguang Wang ,&nbsp;Kerrie Evans ,&nbsp;Dean Hartley ,&nbsp;Scott Morrison ,&nbsp;Martin Veidt ,&nbsp;Gui Wang","doi":"10.1016/j.bbe.2024.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>Plantar pressure distribution offers insights into foot function, gait mechanics, and foot-related issues. This systematic review presents an analysis of the use of artificial neural network techniques in the context of plantar pressure analysis. 60 studies were included in the review. Sample size, pathology, pressure sensor number, data collection device, utilization of other sensor devices, ground-truth methods, pre-processing dataset, neural network type, and evaluation metrics were evaluated. Utilization of customized wearable footwear devices for the acquisition of data was common amongst both healthy participants and patients. Inertial measurement units emerged as an effective compensatory measure to address the limitations associated with the distribution of plantar pressure. Ground truth methods predominantly relied on the usage of both annotations and reference devices. Multilayer perceptron, convolutional neural networks, and recurrent neural networks were identified as the most frequently employed artificial neural network algorithms across the reviewed studies. Finally, the evaluation of performance largely drew upon statistical descriptions and other machine learning methods. This review provides a comprehensive understanding of the use of artificial neural network techniques in plantar pressure analysis, highlighting opportunities for future research.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 1","pages":"Pages 197-208"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0208521624000056/pdfft?md5=9b7f95a54d7af9620bb2a34de80b906f&pid=1-s2.0-S0208521624000056-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A systematic review of artificial neural network techniques for analysis of foot plantar pressure\",\"authors\":\"Chongguang Wang ,&nbsp;Kerrie Evans ,&nbsp;Dean Hartley ,&nbsp;Scott Morrison ,&nbsp;Martin Veidt ,&nbsp;Gui Wang\",\"doi\":\"10.1016/j.bbe.2024.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plantar pressure distribution offers insights into foot function, gait mechanics, and foot-related issues. This systematic review presents an analysis of the use of artificial neural network techniques in the context of plantar pressure analysis. 60 studies were included in the review. Sample size, pathology, pressure sensor number, data collection device, utilization of other sensor devices, ground-truth methods, pre-processing dataset, neural network type, and evaluation metrics were evaluated. Utilization of customized wearable footwear devices for the acquisition of data was common amongst both healthy participants and patients. Inertial measurement units emerged as an effective compensatory measure to address the limitations associated with the distribution of plantar pressure. Ground truth methods predominantly relied on the usage of both annotations and reference devices. Multilayer perceptron, convolutional neural networks, and recurrent neural networks were identified as the most frequently employed artificial neural network algorithms across the reviewed studies. Finally, the evaluation of performance largely drew upon statistical descriptions and other machine learning methods. This review provides a comprehensive understanding of the use of artificial neural network techniques in plantar pressure analysis, highlighting opportunities for future research.</p></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":\"44 1\",\"pages\":\"Pages 197-208\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0208521624000056/pdfft?md5=9b7f95a54d7af9620bb2a34de80b906f&pid=1-s2.0-S0208521624000056-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521624000056\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521624000056","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

足底压力分布有助于深入了解足部功能、步态力学和足部相关问题。本系统综述分析了人工神经网络技术在足底压力分析中的应用。60 项研究被纳入综述。对样本大小、病理学、压力传感器数量、数据采集设备、其他传感器设备的使用、地面实况方法、预处理数据集、神经网络类型和评估指标进行了评估。健康参与者和患者普遍使用定制的可穿戴鞋类设备采集数据。惯性测量装置是一种有效的补偿措施,可解决足底压力分布的局限性。地面实况方法主要依赖于使用注释和参考设备。多层感知器、卷积神经网络和递归神经网络被认为是综述研究中最常用的人工神经网络算法。最后,性能评估在很大程度上借鉴了统计描述和其他机器学习方法。本综述全面介绍了人工神经网络技术在足底压力分析中的应用,并强调了未来研究的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A systematic review of artificial neural network techniques for analysis of foot plantar pressure

Plantar pressure distribution offers insights into foot function, gait mechanics, and foot-related issues. This systematic review presents an analysis of the use of artificial neural network techniques in the context of plantar pressure analysis. 60 studies were included in the review. Sample size, pathology, pressure sensor number, data collection device, utilization of other sensor devices, ground-truth methods, pre-processing dataset, neural network type, and evaluation metrics were evaluated. Utilization of customized wearable footwear devices for the acquisition of data was common amongst both healthy participants and patients. Inertial measurement units emerged as an effective compensatory measure to address the limitations associated with the distribution of plantar pressure. Ground truth methods predominantly relied on the usage of both annotations and reference devices. Multilayer perceptron, convolutional neural networks, and recurrent neural networks were identified as the most frequently employed artificial neural network algorithms across the reviewed studies. Finally, the evaluation of performance largely drew upon statistical descriptions and other machine learning methods. This review provides a comprehensive understanding of the use of artificial neural network techniques in plantar pressure analysis, highlighting opportunities for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.50
自引率
6.20%
发文量
77
审稿时长
38 days
期刊介绍: Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信