{"title":"睡惊和与睡眠相关的高运动性癫痫发作中的恐惧唤醒可能涉及显著性网络以及坎农和塞利的急性应激反应","authors":"Péter Halász , Péter Simor , Anna Szűcs","doi":"10.1016/j.ebr.2024.100650","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the disorders of arousal and sleep-related hypermotor epilepsy as genetic twin-conditions, one without, one with epilepsy. They share an augmented arousal-activity during NREM sleep with sleep-wake dissociations, culminating in sleep terrors and sleep-related hypermotor seizures with similar symptoms. The known mutations underlying the two spectra are different, but there are multifold population-genetic-, family- and even individual (the two conditions occurring in the same person) overlaps supporting common genetic roots. In the episodes of disorders of arousal, the anterior cingulate, anterior insular and pre-frontal cortices (shown to be involved in fear- and emotion processing) are activated within a sleeping brain. These regions overlap with the seizure-onset zones of successfully operated sleep-related hypermotor seizures, and notably, belong to the salience network being consistent with its hubs. The arousal-relatedness and the similar fearful confusion occurring in sleep terrors and hypermotor seizures, make them alike acute stress-responses emerging from sleep; triggered by false alarms. The activation of the anterior cingulate, prefrontal and insular regions in the episodes of both conditions, can easily mobilize the hypothalamo-pituitary-adrenal axis (preparing fight-flight responses in wakefulness); through its direct pathways to and from the salience network. This hypothesis has never been studied.</p></div>","PeriodicalId":36558,"journal":{"name":"Epilepsy and Behavior Reports","volume":"25 ","pages":"Article 100650"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589986424000078/pdfft?md5=ed42c11f13fb4f68798e147a1d794103&pid=1-s2.0-S2589986424000078-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fearful arousals in sleep terrors and sleep-related hypermotor epileptic seizures may involve the salience network and the acute stress response of Cannon and Selye\",\"authors\":\"Péter Halász , Péter Simor , Anna Szűcs\",\"doi\":\"10.1016/j.ebr.2024.100650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the disorders of arousal and sleep-related hypermotor epilepsy as genetic twin-conditions, one without, one with epilepsy. They share an augmented arousal-activity during NREM sleep with sleep-wake dissociations, culminating in sleep terrors and sleep-related hypermotor seizures with similar symptoms. The known mutations underlying the two spectra are different, but there are multifold population-genetic-, family- and even individual (the two conditions occurring in the same person) overlaps supporting common genetic roots. In the episodes of disorders of arousal, the anterior cingulate, anterior insular and pre-frontal cortices (shown to be involved in fear- and emotion processing) are activated within a sleeping brain. These regions overlap with the seizure-onset zones of successfully operated sleep-related hypermotor seizures, and notably, belong to the salience network being consistent with its hubs. The arousal-relatedness and the similar fearful confusion occurring in sleep terrors and hypermotor seizures, make them alike acute stress-responses emerging from sleep; triggered by false alarms. The activation of the anterior cingulate, prefrontal and insular regions in the episodes of both conditions, can easily mobilize the hypothalamo-pituitary-adrenal axis (preparing fight-flight responses in wakefulness); through its direct pathways to and from the salience network. This hypothesis has never been studied.</p></div>\",\"PeriodicalId\":36558,\"journal\":{\"name\":\"Epilepsy and Behavior Reports\",\"volume\":\"25 \",\"pages\":\"Article 100650\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589986424000078/pdfft?md5=ed42c11f13fb4f68798e147a1d794103&pid=1-s2.0-S2589986424000078-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epilepsy and Behavior Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589986424000078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsy and Behavior Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589986424000078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Fearful arousals in sleep terrors and sleep-related hypermotor epileptic seizures may involve the salience network and the acute stress response of Cannon and Selye
We consider the disorders of arousal and sleep-related hypermotor epilepsy as genetic twin-conditions, one without, one with epilepsy. They share an augmented arousal-activity during NREM sleep with sleep-wake dissociations, culminating in sleep terrors and sleep-related hypermotor seizures with similar symptoms. The known mutations underlying the two spectra are different, but there are multifold population-genetic-, family- and even individual (the two conditions occurring in the same person) overlaps supporting common genetic roots. In the episodes of disorders of arousal, the anterior cingulate, anterior insular and pre-frontal cortices (shown to be involved in fear- and emotion processing) are activated within a sleeping brain. These regions overlap with the seizure-onset zones of successfully operated sleep-related hypermotor seizures, and notably, belong to the salience network being consistent with its hubs. The arousal-relatedness and the similar fearful confusion occurring in sleep terrors and hypermotor seizures, make them alike acute stress-responses emerging from sleep; triggered by false alarms. The activation of the anterior cingulate, prefrontal and insular regions in the episodes of both conditions, can easily mobilize the hypothalamo-pituitary-adrenal axis (preparing fight-flight responses in wakefulness); through its direct pathways to and from the salience network. This hypothesis has never been studied.