Han Byul Kim, Young Joon Hong, Seung Hun Lee, Hae Jin Kee, Munki Kim, Youngkeun Ahn, Myung Ho Jeong
{"title":"没食子酸抑制猪支架内再狭窄模型中平滑肌细胞的增殖和迁移","authors":"Han Byul Kim, Young Joon Hong, Seung Hun Lee, Hae Jin Kee, Munki Kim, Youngkeun Ahn, Myung Ho Jeong","doi":"10.4068/cmj.2024.60.1.32","DOIUrl":null,"url":null,"abstract":"<p><p>In-stent restenosis (ISR) develops primarily due to neointimal hyperplasia. Gallic acid (GA) has anti-inflammatory, antioxidant, and cardioprotective effects. This study sought to investigate the effects of GA on neointimal hyperplasia and proliferation and migration of vascular smooth muscle cells (VSMCs) in a pig ISR model. In vitro proliferation and migration experiments were confirmed, after VSMCs were treated with platelet-derived growth factor (PDGF-BB) and GA (100 µM) using a 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay and a scratch wound assay for 24 hours and 48 hours. A bare metal stent (BMS) was implanted in the pig coronary artery to induce ISR with overdilation (1.1-1.2:1), and GA (10 mg/kg/day) was administered for 4 weeks. At the 4-week follow-up, optical coherence tomography (OCT) and histopathological analyses were performed. GA decreased the proliferation of VSMCs by PDGF-BB for 24 hours (89.24±24.56% vs. 170.04±19.98%, p<0.001) and 48 hours (124.87±7.35% vs. 187.64±4.83%, p<0.001). GA inhibited the migration of VSMCs induced by PDGF-BB for 24 hours (26.73±2.38% vs. 65.38±9.73%, p<0.001) and 48 hours (32.96±3.04% vs. 77.04±10.07%, p<0.001). Using OCT, % neointimal hyperplasia was shown to have significantly decreased in the GA group compared with control vehicle group (28.25±10.07% vs. 37.60±10.84%, p<0.001). GA effectively reduced neointimal hyperplasia by inhibiting the proliferation and migration of VSMCs in a pig ISR model. GA could be a potential treatment strategy for reducing ISR after stent implantation.</p>","PeriodicalId":94372,"journal":{"name":"Chonnam medical journal","volume":"60 1","pages":"32-39"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10828086/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gallic Acid Inhibits Proliferation and Migration of Smooth Muscle Cells in a Pig In-Stent Restenosis Model.\",\"authors\":\"Han Byul Kim, Young Joon Hong, Seung Hun Lee, Hae Jin Kee, Munki Kim, Youngkeun Ahn, Myung Ho Jeong\",\"doi\":\"10.4068/cmj.2024.60.1.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In-stent restenosis (ISR) develops primarily due to neointimal hyperplasia. Gallic acid (GA) has anti-inflammatory, antioxidant, and cardioprotective effects. This study sought to investigate the effects of GA on neointimal hyperplasia and proliferation and migration of vascular smooth muscle cells (VSMCs) in a pig ISR model. In vitro proliferation and migration experiments were confirmed, after VSMCs were treated with platelet-derived growth factor (PDGF-BB) and GA (100 µM) using a 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay and a scratch wound assay for 24 hours and 48 hours. A bare metal stent (BMS) was implanted in the pig coronary artery to induce ISR with overdilation (1.1-1.2:1), and GA (10 mg/kg/day) was administered for 4 weeks. At the 4-week follow-up, optical coherence tomography (OCT) and histopathological analyses were performed. GA decreased the proliferation of VSMCs by PDGF-BB for 24 hours (89.24±24.56% vs. 170.04±19.98%, p<0.001) and 48 hours (124.87±7.35% vs. 187.64±4.83%, p<0.001). GA inhibited the migration of VSMCs induced by PDGF-BB for 24 hours (26.73±2.38% vs. 65.38±9.73%, p<0.001) and 48 hours (32.96±3.04% vs. 77.04±10.07%, p<0.001). Using OCT, % neointimal hyperplasia was shown to have significantly decreased in the GA group compared with control vehicle group (28.25±10.07% vs. 37.60±10.84%, p<0.001). GA effectively reduced neointimal hyperplasia by inhibiting the proliferation and migration of VSMCs in a pig ISR model. GA could be a potential treatment strategy for reducing ISR after stent implantation.</p>\",\"PeriodicalId\":94372,\"journal\":{\"name\":\"Chonnam medical journal\",\"volume\":\"60 1\",\"pages\":\"32-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10828086/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chonnam medical journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4068/cmj.2024.60.1.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chonnam medical journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4068/cmj.2024.60.1.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Gallic Acid Inhibits Proliferation and Migration of Smooth Muscle Cells in a Pig In-Stent Restenosis Model.
In-stent restenosis (ISR) develops primarily due to neointimal hyperplasia. Gallic acid (GA) has anti-inflammatory, antioxidant, and cardioprotective effects. This study sought to investigate the effects of GA on neointimal hyperplasia and proliferation and migration of vascular smooth muscle cells (VSMCs) in a pig ISR model. In vitro proliferation and migration experiments were confirmed, after VSMCs were treated with platelet-derived growth factor (PDGF-BB) and GA (100 µM) using a 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay and a scratch wound assay for 24 hours and 48 hours. A bare metal stent (BMS) was implanted in the pig coronary artery to induce ISR with overdilation (1.1-1.2:1), and GA (10 mg/kg/day) was administered for 4 weeks. At the 4-week follow-up, optical coherence tomography (OCT) and histopathological analyses were performed. GA decreased the proliferation of VSMCs by PDGF-BB for 24 hours (89.24±24.56% vs. 170.04±19.98%, p<0.001) and 48 hours (124.87±7.35% vs. 187.64±4.83%, p<0.001). GA inhibited the migration of VSMCs induced by PDGF-BB for 24 hours (26.73±2.38% vs. 65.38±9.73%, p<0.001) and 48 hours (32.96±3.04% vs. 77.04±10.07%, p<0.001). Using OCT, % neointimal hyperplasia was shown to have significantly decreased in the GA group compared with control vehicle group (28.25±10.07% vs. 37.60±10.84%, p<0.001). GA effectively reduced neointimal hyperplasia by inhibiting the proliferation and migration of VSMCs in a pig ISR model. GA could be a potential treatment strategy for reducing ISR after stent implantation.