Negin Kordi, Ali Saydi, Sajad Karami, Behnam Bagherzadeh-Rahmani, Emanuele Marzetti, Friedrich Jung, Brent R Stockwell
{"title":"老化过程中的铁蛋白沉积和有氧训练:综述。","authors":"Negin Kordi, Ali Saydi, Sajad Karami, Behnam Bagherzadeh-Rahmani, Emanuele Marzetti, Friedrich Jung, Brent R Stockwell","doi":"10.3233/CH-232076","DOIUrl":null,"url":null,"abstract":"<p><p> Ferroptosis is a form of programmed cell death that plays a significant role in causing several diseases such as heart attack and heart failure, through alterations in fat, amino acid, and iron metabolism. Comprehending the regulatory mechanisms of ferroptosis signaling is critical because it has a considerable effect on the elderly's mortality. Conversely, age-related changes in substrate metabolism and metabolite levels are recognized to give rise to obesity. Furthermore, research has proposed that aging and obesity-related changes in substrate metabolism may aggravate ferroptosis. The suppression of ferroptosis holds potential as a successful therapeutic approach for managing different diseases, including sarcopenia, cardiovascular diseases, and central nervous system diseases. However, the pathologic and biological mechanisms behind the function of ferroptosis are not fully comprehended yet. Physical activity could affect lipid, amino acid, and iron metabolism to modulate ferroptosis. The aim of this study is to showcase the current understanding of the molecular mechanisms leading to ferroptosis and discuss the role of aging and physical activity in this phenomenon.</p>","PeriodicalId":93943,"journal":{"name":"Clinical hemorheology and microcirculation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroptosis and aerobic training in ageing.\",\"authors\":\"Negin Kordi, Ali Saydi, Sajad Karami, Behnam Bagherzadeh-Rahmani, Emanuele Marzetti, Friedrich Jung, Brent R Stockwell\",\"doi\":\"10.3233/CH-232076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p> Ferroptosis is a form of programmed cell death that plays a significant role in causing several diseases such as heart attack and heart failure, through alterations in fat, amino acid, and iron metabolism. Comprehending the regulatory mechanisms of ferroptosis signaling is critical because it has a considerable effect on the elderly's mortality. Conversely, age-related changes in substrate metabolism and metabolite levels are recognized to give rise to obesity. Furthermore, research has proposed that aging and obesity-related changes in substrate metabolism may aggravate ferroptosis. The suppression of ferroptosis holds potential as a successful therapeutic approach for managing different diseases, including sarcopenia, cardiovascular diseases, and central nervous system diseases. However, the pathologic and biological mechanisms behind the function of ferroptosis are not fully comprehended yet. Physical activity could affect lipid, amino acid, and iron metabolism to modulate ferroptosis. The aim of this study is to showcase the current understanding of the molecular mechanisms leading to ferroptosis and discuss the role of aging and physical activity in this phenomenon.</p>\",\"PeriodicalId\":93943,\"journal\":{\"name\":\"Clinical hemorheology and microcirculation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical hemorheology and microcirculation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/CH-232076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical hemorheology and microcirculation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/CH-232076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ferroptosis is a form of programmed cell death that plays a significant role in causing several diseases such as heart attack and heart failure, through alterations in fat, amino acid, and iron metabolism. Comprehending the regulatory mechanisms of ferroptosis signaling is critical because it has a considerable effect on the elderly's mortality. Conversely, age-related changes in substrate metabolism and metabolite levels are recognized to give rise to obesity. Furthermore, research has proposed that aging and obesity-related changes in substrate metabolism may aggravate ferroptosis. The suppression of ferroptosis holds potential as a successful therapeutic approach for managing different diseases, including sarcopenia, cardiovascular diseases, and central nervous system diseases. However, the pathologic and biological mechanisms behind the function of ferroptosis are not fully comprehended yet. Physical activity could affect lipid, amino acid, and iron metabolism to modulate ferroptosis. The aim of this study is to showcase the current understanding of the molecular mechanisms leading to ferroptosis and discuss the role of aging and physical activity in this phenomenon.