Sadhana Kanoo, Helen Goodluck, Young Chul Kim, Aleix Navarro Garrido, Maria Crespo-Masip, Natalia Lopez, Haiyan Zhang, Romer A Gonzalez-Villalobos, Li-Jun Ma, Volker Vallon
{"title":"eNOS 基因缺失(而非杂合子)会升高 BTBR 肥胖/肥胖小鼠的血压并加重肾病。","authors":"Sadhana Kanoo, Helen Goodluck, Young Chul Kim, Aleix Navarro Garrido, Maria Crespo-Masip, Natalia Lopez, Haiyan Zhang, Romer A Gonzalez-Villalobos, Li-Jun Ma, Volker Vallon","doi":"10.1159/000536522","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>ob/ob mice are a leptin-deficient type 2 diabetes mellitus model, which, on a BTBR background, mimics the glomerular pathophysiology of diabetic nephropathy (DN). Since leptin deficiency reduces blood pressure (BP) and endothelial nitric oxide synthase (eNOS) lowers BP and is kidney protective, we attempted to develop a more robust DN model by introducing eNOS deficiency in BTBR ob/ob mice.</p><p><strong>Methods: </strong>Six experimental groups included littermate male and female BTBR ob/ob or wild-type for ob (control) as well as wild-type (WT), heterozygote (HET), or knockout (KO) for eNOS. Systolic BP (by automated tail-cuff) and GFR (by FITC-sinistrin plasma kinetics) were determined in awake mice at 27-30 weeks of age, followed by molecular and histological kidney analyses.</p><p><strong>Results: </strong>Male and female ob/ob WT presented hyperglycemia and larger body and kidney weight, GFR, glomerular injury, and urine albumin to creatinine ratio (UACR) despite modestly lower BP versus control WT. These effects were associated with a higher tubular injury score and renal mRNA expression of NGAL only in males, whereas female ob/ob WT unexpectedly had lower KIM-1 and COL1A1 expression versus control WT, indicating sex differences. HET for eNOS did not consistently alter BP or renal outcome in control or ob/ob. In comparison, eNOS KO increased BP (15-25 mm Hg) and worsened renal markers of injury, inflammation and fibrosis, GFR, UACR, and survival rates, as observed in control and, more pronouncedly, in ob/ob mice and independent of sex.</p><p><strong>Conclusions: </strong>Deletion, but not heterozygosity, of eNOS raises blood pressure and aggravates nephropathy in BTBR ob/ob mice.</p>","PeriodicalId":18998,"journal":{"name":"Nephron","volume":" ","pages":"631-642"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291698/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deletion, but Not Heterozygosity, of eNOS Raises Blood Pressure and Aggravates Nephropathy in BTBR ob/ob Mice.\",\"authors\":\"Sadhana Kanoo, Helen Goodluck, Young Chul Kim, Aleix Navarro Garrido, Maria Crespo-Masip, Natalia Lopez, Haiyan Zhang, Romer A Gonzalez-Villalobos, Li-Jun Ma, Volker Vallon\",\"doi\":\"10.1159/000536522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>ob/ob mice are a leptin-deficient type 2 diabetes mellitus model, which, on a BTBR background, mimics the glomerular pathophysiology of diabetic nephropathy (DN). Since leptin deficiency reduces blood pressure (BP) and endothelial nitric oxide synthase (eNOS) lowers BP and is kidney protective, we attempted to develop a more robust DN model by introducing eNOS deficiency in BTBR ob/ob mice.</p><p><strong>Methods: </strong>Six experimental groups included littermate male and female BTBR ob/ob or wild-type for ob (control) as well as wild-type (WT), heterozygote (HET), or knockout (KO) for eNOS. Systolic BP (by automated tail-cuff) and GFR (by FITC-sinistrin plasma kinetics) were determined in awake mice at 27-30 weeks of age, followed by molecular and histological kidney analyses.</p><p><strong>Results: </strong>Male and female ob/ob WT presented hyperglycemia and larger body and kidney weight, GFR, glomerular injury, and urine albumin to creatinine ratio (UACR) despite modestly lower BP versus control WT. These effects were associated with a higher tubular injury score and renal mRNA expression of NGAL only in males, whereas female ob/ob WT unexpectedly had lower KIM-1 and COL1A1 expression versus control WT, indicating sex differences. HET for eNOS did not consistently alter BP or renal outcome in control or ob/ob. In comparison, eNOS KO increased BP (15-25 mm Hg) and worsened renal markers of injury, inflammation and fibrosis, GFR, UACR, and survival rates, as observed in control and, more pronouncedly, in ob/ob mice and independent of sex.</p><p><strong>Conclusions: </strong>Deletion, but not heterozygosity, of eNOS raises blood pressure and aggravates nephropathy in BTBR ob/ob mice.</p>\",\"PeriodicalId\":18998,\"journal\":{\"name\":\"Nephron\",\"volume\":\" \",\"pages\":\"631-642\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291698/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nephron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000536522\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000536522","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
Deletion, but Not Heterozygosity, of eNOS Raises Blood Pressure and Aggravates Nephropathy in BTBR ob/ob Mice.
Introduction: ob/ob mice are a leptin-deficient type 2 diabetes mellitus model, which, on a BTBR background, mimics the glomerular pathophysiology of diabetic nephropathy (DN). Since leptin deficiency reduces blood pressure (BP) and endothelial nitric oxide synthase (eNOS) lowers BP and is kidney protective, we attempted to develop a more robust DN model by introducing eNOS deficiency in BTBR ob/ob mice.
Methods: Six experimental groups included littermate male and female BTBR ob/ob or wild-type for ob (control) as well as wild-type (WT), heterozygote (HET), or knockout (KO) for eNOS. Systolic BP (by automated tail-cuff) and GFR (by FITC-sinistrin plasma kinetics) were determined in awake mice at 27-30 weeks of age, followed by molecular and histological kidney analyses.
Results: Male and female ob/ob WT presented hyperglycemia and larger body and kidney weight, GFR, glomerular injury, and urine albumin to creatinine ratio (UACR) despite modestly lower BP versus control WT. These effects were associated with a higher tubular injury score and renal mRNA expression of NGAL only in males, whereas female ob/ob WT unexpectedly had lower KIM-1 and COL1A1 expression versus control WT, indicating sex differences. HET for eNOS did not consistently alter BP or renal outcome in control or ob/ob. In comparison, eNOS KO increased BP (15-25 mm Hg) and worsened renal markers of injury, inflammation and fibrosis, GFR, UACR, and survival rates, as observed in control and, more pronouncedly, in ob/ob mice and independent of sex.
Conclusions: Deletion, but not heterozygosity, of eNOS raises blood pressure and aggravates nephropathy in BTBR ob/ob mice.
期刊介绍:
''Nephron'' comprises three sections, which are each under the editorship of internationally recognized leaders and served by specialized Associate Editors. Apart from high-quality original research, ''Nephron'' publishes invited reviews/minireviews on up-to-date topics. Papers undergo an innovative and transparent peer review process encompassing a Presentation Report which assesses and summarizes the presentation of the paper in an unbiased and standardized way.