{"title":"细胞外组蛋白促进小鼠血管平滑肌细胞中磷酸钙依赖性钙化","authors":"Tomonori Hoshino, Davood Kharaghani, Shohei Kohno","doi":"10.1093/jb/mvae011","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular calcification, a major risk factor for cardiovascular events, is associated with a poor prognosis in chronic kidney disease (CKD) patients. This process is often associated with the transformation of vascular smooth muscle cells (VSMCs) into cells with osteoblast-like characteristics. Damage-associated molecular patterns (DAMPs), such as extracellular histones released from damaged or dying cells, are suspected to accumulate at calcification sites. To investigate the potential involvement of DAMPs in vascular calcification, we assessed the impact of externally added histones (extracellular histones) on calcium and inorganic phosphate-induced calcification in mouse VSMCs. Our study found that extracellular histones intensified calcification. We also observed that the histones decreased the expression of VSMC marker genes while simultaneously increasing the expression of osteoblast marker genes. Additionally, histones treated with DNase I, which degrades dsDNA, attenuated this calcification, compared with the non-treated histones, suggesting a potential involvement of dsDNA in this process. Elevated levels of dsDNA were also detected in the serum of CKD model mice, underlining its potential role in vascular calcification in CKD. Our findings suggest that extracellular histones could play a pivotal role in the vascular calcification observed in CKD.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"643-648"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracellular histones promote calcium phosphate-dependent calcification in mouse vascular smooth muscle cells.\",\"authors\":\"Tomonori Hoshino, Davood Kharaghani, Shohei Kohno\",\"doi\":\"10.1093/jb/mvae011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vascular calcification, a major risk factor for cardiovascular events, is associated with a poor prognosis in chronic kidney disease (CKD) patients. This process is often associated with the transformation of vascular smooth muscle cells (VSMCs) into cells with osteoblast-like characteristics. Damage-associated molecular patterns (DAMPs), such as extracellular histones released from damaged or dying cells, are suspected to accumulate at calcification sites. To investigate the potential involvement of DAMPs in vascular calcification, we assessed the impact of externally added histones (extracellular histones) on calcium and inorganic phosphate-induced calcification in mouse VSMCs. Our study found that extracellular histones intensified calcification. We also observed that the histones decreased the expression of VSMC marker genes while simultaneously increasing the expression of osteoblast marker genes. Additionally, histones treated with DNase I, which degrades dsDNA, attenuated this calcification, compared with the non-treated histones, suggesting a potential involvement of dsDNA in this process. Elevated levels of dsDNA were also detected in the serum of CKD model mice, underlining its potential role in vascular calcification in CKD. Our findings suggest that extracellular histones could play a pivotal role in the vascular calcification observed in CKD.</p>\",\"PeriodicalId\":15234,\"journal\":{\"name\":\"Journal of biochemistry\",\"volume\":\" \",\"pages\":\"643-648\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jb/mvae011\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvae011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Vascular calcification, a major risk factor for cardiovascular events, is associated with a poor prognosis in chronic kidney disease (CKD) patients. This process is often associated with the transformation of vascular smooth muscle cells (VSMCs) into cells with osteoblast-like characteristics. Damage-associated molecular patterns (DAMPs), such as extracellular histones released from damaged or dying cells, are suspected to accumulate at calcification sites. To investigate the potential involvement of DAMPs in vascular calcification, we assessed the impact of externally added histones (extracellular histones) on calcium and inorganic phosphate-induced calcification in mouse VSMCs. Our study found that extracellular histones intensified calcification. We also observed that the histones decreased the expression of VSMC marker genes while simultaneously increasing the expression of osteoblast marker genes. Additionally, histones treated with DNase I, which degrades dsDNA, attenuated this calcification, compared with the non-treated histones, suggesting a potential involvement of dsDNA in this process. Elevated levels of dsDNA were also detected in the serum of CKD model mice, underlining its potential role in vascular calcification in CKD. Our findings suggest that extracellular histones could play a pivotal role in the vascular calcification observed in CKD.
期刊介绍:
The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.