{"title":"宏观尺度过渡时期微观经典动力学的流体动力学和动力学表征","authors":"Pavel A. Andreev","doi":"10.1017/s0022377823000818","DOIUrl":null,"url":null,"abstract":"An open problem of the derivation of the relativistic Vlasov equation for systems of charged particles moving with velocities up to the speed of light and creating the electromagnetic field in accordance with the full set of the Maxwell equations is considered. Moreover, the method of derivation is illustrated on the non-relativistic kinetic model. Independent derivation of the relativistic hydrodynamics is also demonstrated. The key role of these derivations of the hydrodynamic and kinetic equations includes the explicit operator of averaging on the physically infinitesimal volume suggested by L.S. Kuzmenkov.","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"221 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic and kinetic representation of the microscopic classic dynamics at the transition on the macroscopic scale\",\"authors\":\"Pavel A. Andreev\",\"doi\":\"10.1017/s0022377823000818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An open problem of the derivation of the relativistic Vlasov equation for systems of charged particles moving with velocities up to the speed of light and creating the electromagnetic field in accordance with the full set of the Maxwell equations is considered. Moreover, the method of derivation is illustrated on the non-relativistic kinetic model. Independent derivation of the relativistic hydrodynamics is also demonstrated. The key role of these derivations of the hydrodynamic and kinetic equations includes the explicit operator of averaging on the physically infinitesimal volume suggested by L.S. Kuzmenkov.\",\"PeriodicalId\":16846,\"journal\":{\"name\":\"Journal of Plasma Physics\",\"volume\":\"221 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s0022377823000818\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377823000818","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Hydrodynamic and kinetic representation of the microscopic classic dynamics at the transition on the macroscopic scale
An open problem of the derivation of the relativistic Vlasov equation for systems of charged particles moving with velocities up to the speed of light and creating the electromagnetic field in accordance with the full set of the Maxwell equations is considered. Moreover, the method of derivation is illustrated on the non-relativistic kinetic model. Independent derivation of the relativistic hydrodynamics is also demonstrated. The key role of these derivations of the hydrodynamic and kinetic equations includes the explicit operator of averaging on the physically infinitesimal volume suggested by L.S. Kuzmenkov.
期刊介绍:
JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.