V. Reboud , O. Concepción , W. Du , M. El Kurdi , J.M. Hartmann , Z. Ikonic , S. Assali , N. Pauc , V. Calvo , C. Cardoux , E. Kroemer , N. Coudurier , P. Rodriguez , S.-Q. Yu , D. Buca , A. Chelnokov
{"title":"用于近红外应用的 GeSn 合金研究进展","authors":"V. Reboud , O. Concepción , W. Du , M. El Kurdi , J.M. Hartmann , Z. Ikonic , S. Assali , N. Pauc , V. Calvo , C. Cardoux , E. Kroemer , N. Coudurier , P. Rodriguez , S.-Q. Yu , D. Buca , A. Chelnokov","doi":"10.1016/j.photonics.2024.101233","DOIUrl":null,"url":null,"abstract":"<div><p>Silicon photonics is widely used for near InfraRed (IR) applications up to 1.6 µm. It plays a key role in short-range optical data communications. However, silicon photonics does not really address mid-IR applications, particularly in the 1.6–5 µm wavelength range. This spectral region is essential for environmental/life sensing and safety applications relying on the optical features of molecular vibrations, the aim being to discern and categorize complex chemical entities. Growing markets for such analysis prioritise sensitivity, specificity, compactness, energy-efficient operation and cost effectiveness. The need for a CMOS-compatible integrated photonic platform for the mid-IR is obvious. Such fully-group-IV semiconductor platform should include low-loss guided interconnects, detectors, modulators and, critically, efficient integrated light sources. This paper provides a comprehensive review of recent advances in GeSn-based mid-IR silicon-compatible devices, including optically and electrically pumped lasers, light-emitting diodes and photodetectors. It also discusses the principles underlying these developments, with focuses on material growth techniques and processing methods.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101233"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in GeSn alloys for MIR applications\",\"authors\":\"V. Reboud , O. Concepción , W. Du , M. El Kurdi , J.M. Hartmann , Z. Ikonic , S. Assali , N. Pauc , V. Calvo , C. Cardoux , E. Kroemer , N. Coudurier , P. Rodriguez , S.-Q. Yu , D. Buca , A. Chelnokov\",\"doi\":\"10.1016/j.photonics.2024.101233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silicon photonics is widely used for near InfraRed (IR) applications up to 1.6 µm. It plays a key role in short-range optical data communications. However, silicon photonics does not really address mid-IR applications, particularly in the 1.6–5 µm wavelength range. This spectral region is essential for environmental/life sensing and safety applications relying on the optical features of molecular vibrations, the aim being to discern and categorize complex chemical entities. Growing markets for such analysis prioritise sensitivity, specificity, compactness, energy-efficient operation and cost effectiveness. The need for a CMOS-compatible integrated photonic platform for the mid-IR is obvious. Such fully-group-IV semiconductor platform should include low-loss guided interconnects, detectors, modulators and, critically, efficient integrated light sources. This paper provides a comprehensive review of recent advances in GeSn-based mid-IR silicon-compatible devices, including optically and electrically pumped lasers, light-emitting diodes and photodetectors. It also discusses the principles underlying these developments, with focuses on material growth techniques and processing methods.</p></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":\"58 \",\"pages\":\"Article 101233\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569441024000087\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441024000087","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Silicon photonics is widely used for near InfraRed (IR) applications up to 1.6 µm. It plays a key role in short-range optical data communications. However, silicon photonics does not really address mid-IR applications, particularly in the 1.6–5 µm wavelength range. This spectral region is essential for environmental/life sensing and safety applications relying on the optical features of molecular vibrations, the aim being to discern and categorize complex chemical entities. Growing markets for such analysis prioritise sensitivity, specificity, compactness, energy-efficient operation and cost effectiveness. The need for a CMOS-compatible integrated photonic platform for the mid-IR is obvious. Such fully-group-IV semiconductor platform should include low-loss guided interconnects, detectors, modulators and, critically, efficient integrated light sources. This paper provides a comprehensive review of recent advances in GeSn-based mid-IR silicon-compatible devices, including optically and electrically pumped lasers, light-emitting diodes and photodetectors. It also discusses the principles underlying these developments, with focuses on material growth techniques and processing methods.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.