{"title":"白俄罗斯夏季地表温度与叶面积指数之间的前向和后向联系","authors":"S. A. Lysenko","doi":"10.1134/s000143382309013x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>On the basis of Earth remote sensing data for 2000–2020, quantitative estimates of the influence of vegetation cover degradation on the summer warming in Belarus have been obtained. The average leaf area index of Belarus for this period increased by 3.3%, mainly due to forest areas, the leaf index of which increased by about 8%. The growth of the leaf area index slowed down the summer warming of forest lands in the north (above 54° N) by about half and by more than a quarter in the south of Belarus. At the same time, the leaf area index of croplands decreased by about 5%, which caused their additional warming and amplified their land surface temperature daily cycle for the summer period. Statistically significant signs of bioclimatic land degradation have been found on the territory of Belarus with a total area of about 400 000 ha, which are enhanced by high values of positive feedback between temperature, vegetation cover, and soil moisture. About of 58% of the degrading lands are agricultural lands located mainly in the southern part of the country. On these lands, the summer temperature grows twice as fast as the average for Belarus, and the leaf index decreases at a rate of about 2% per year, which indicates the insufficiency of agriculture climate mitigation in certain regions of Belarus.</p>","PeriodicalId":54911,"journal":{"name":"Izvestiya Atmospheric and Oceanic Physics","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forward and Backward Linkages between Land Surface Temperature and Leaf Area Index for the Summer in Belarus\",\"authors\":\"S. A. Lysenko\",\"doi\":\"10.1134/s000143382309013x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>On the basis of Earth remote sensing data for 2000–2020, quantitative estimates of the influence of vegetation cover degradation on the summer warming in Belarus have been obtained. The average leaf area index of Belarus for this period increased by 3.3%, mainly due to forest areas, the leaf index of which increased by about 8%. The growth of the leaf area index slowed down the summer warming of forest lands in the north (above 54° N) by about half and by more than a quarter in the south of Belarus. At the same time, the leaf area index of croplands decreased by about 5%, which caused their additional warming and amplified their land surface temperature daily cycle for the summer period. Statistically significant signs of bioclimatic land degradation have been found on the territory of Belarus with a total area of about 400 000 ha, which are enhanced by high values of positive feedback between temperature, vegetation cover, and soil moisture. About of 58% of the degrading lands are agricultural lands located mainly in the southern part of the country. On these lands, the summer temperature grows twice as fast as the average for Belarus, and the leaf index decreases at a rate of about 2% per year, which indicates the insufficiency of agriculture climate mitigation in certain regions of Belarus.</p>\",\"PeriodicalId\":54911,\"journal\":{\"name\":\"Izvestiya Atmospheric and Oceanic Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s000143382309013x\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Atmospheric and Oceanic Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s000143382309013x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Forward and Backward Linkages between Land Surface Temperature and Leaf Area Index for the Summer in Belarus
Abstract
On the basis of Earth remote sensing data for 2000–2020, quantitative estimates of the influence of vegetation cover degradation on the summer warming in Belarus have been obtained. The average leaf area index of Belarus for this period increased by 3.3%, mainly due to forest areas, the leaf index of which increased by about 8%. The growth of the leaf area index slowed down the summer warming of forest lands in the north (above 54° N) by about half and by more than a quarter in the south of Belarus. At the same time, the leaf area index of croplands decreased by about 5%, which caused their additional warming and amplified their land surface temperature daily cycle for the summer period. Statistically significant signs of bioclimatic land degradation have been found on the territory of Belarus with a total area of about 400 000 ha, which are enhanced by high values of positive feedback between temperature, vegetation cover, and soil moisture. About of 58% of the degrading lands are agricultural lands located mainly in the southern part of the country. On these lands, the summer temperature grows twice as fast as the average for Belarus, and the leaf index decreases at a rate of about 2% per year, which indicates the insufficiency of agriculture climate mitigation in certain regions of Belarus.
期刊介绍:
Izvestiya, Atmospheric and Oceanic Physics is a journal that publishes original scientific research and review articles on vital issues in the physics of the Earth’s atmosphere and hydrosphere and climate theory. The journal presents results of recent studies of physical processes in the atmosphere and ocean that control climate, weather, and their changes. These studies have possible practical applications. The journal also gives room to the discussion of results obtained in theoretical and experimental studies in various fields of oceanic and atmospheric physics, such as the dynamics of gas and water media, interaction of the atmosphere with the ocean and land surfaces, turbulence theory, heat balance and radiation processes, remote sensing and optics of both media, natural and man-induced climate changes, and the state of the atmosphere and ocean. The journal publishes papers on research techniques used in both media, current scientific information on domestic and foreign events in the physics of the atmosphere and ocean.