Xuze Wu, Yu Sun, Wen Liu, Yu Chen, Ruoda Wang, Yi Qiao, Yu Wang
{"title":"热与结构相互作用对带有多个间隙感应接头的重型机械压力机非线性行为的影响","authors":"Xuze Wu, Yu Sun, Wen Liu, Yu Chen, Ruoda Wang, Yi Qiao, Yu Wang","doi":"10.1007/s11044-024-09966-4","DOIUrl":null,"url":null,"abstract":"<p>The thermal elastohydrodynamic (TEHD) effect contributes significantly to the improvement of dynamic behavior of mechanical presses, especially under the complex conditions of high speed, heavy load, and high temperature. In this work, a novel mixed-TEHD model and the numerical algorithm for the multiphysics problem are proposed to predict the nonlinear behavior of the mechanical press considering multiple clearance-induced joints. The propounded lubrication principle includes the thermal effects caused by contact event and the influence of TEHD on the clearance dimension under complex lubrication conditions. The equivalent nodal force method is adapted as the unified treatment of elastic and thermal deformation in the clearance joints. With the introduction of non-conservative forces, the system’s dynamic model is formulated and solved by the Lagrange approach and Newmark-<span>\\(\\beta \\)</span> integration algorithm, respectively. Numerical simulations are performed considering different fluid viscosities and crank speeds to investigate the nonlinear behavior of the mechanical press under various lubrication conditions. The results demonstrate the significance of frictional contact on the bearing thermal characteristics. Compared to the elastic deformation effect of transmission components, the variation of system position accuracy is primarily governed by the dynamics of mixed-lubricated joints. Furthermore, experimental studies are performed to validate the numerical findings.</p>","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal-structure interactions on the nonlinear behavior of the heavy-load mechanical press with multiple clearance-induced joints\",\"authors\":\"Xuze Wu, Yu Sun, Wen Liu, Yu Chen, Ruoda Wang, Yi Qiao, Yu Wang\",\"doi\":\"10.1007/s11044-024-09966-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The thermal elastohydrodynamic (TEHD) effect contributes significantly to the improvement of dynamic behavior of mechanical presses, especially under the complex conditions of high speed, heavy load, and high temperature. In this work, a novel mixed-TEHD model and the numerical algorithm for the multiphysics problem are proposed to predict the nonlinear behavior of the mechanical press considering multiple clearance-induced joints. The propounded lubrication principle includes the thermal effects caused by contact event and the influence of TEHD on the clearance dimension under complex lubrication conditions. The equivalent nodal force method is adapted as the unified treatment of elastic and thermal deformation in the clearance joints. With the introduction of non-conservative forces, the system’s dynamic model is formulated and solved by the Lagrange approach and Newmark-<span>\\\\(\\\\beta \\\\)</span> integration algorithm, respectively. Numerical simulations are performed considering different fluid viscosities and crank speeds to investigate the nonlinear behavior of the mechanical press under various lubrication conditions. The results demonstrate the significance of frictional contact on the bearing thermal characteristics. Compared to the elastic deformation effect of transmission components, the variation of system position accuracy is primarily governed by the dynamics of mixed-lubricated joints. Furthermore, experimental studies are performed to validate the numerical findings.</p>\",\"PeriodicalId\":49792,\"journal\":{\"name\":\"Multibody System Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multibody System Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11044-024-09966-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multibody System Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11044-024-09966-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Thermal-structure interactions on the nonlinear behavior of the heavy-load mechanical press with multiple clearance-induced joints
The thermal elastohydrodynamic (TEHD) effect contributes significantly to the improvement of dynamic behavior of mechanical presses, especially under the complex conditions of high speed, heavy load, and high temperature. In this work, a novel mixed-TEHD model and the numerical algorithm for the multiphysics problem are proposed to predict the nonlinear behavior of the mechanical press considering multiple clearance-induced joints. The propounded lubrication principle includes the thermal effects caused by contact event and the influence of TEHD on the clearance dimension under complex lubrication conditions. The equivalent nodal force method is adapted as the unified treatment of elastic and thermal deformation in the clearance joints. With the introduction of non-conservative forces, the system’s dynamic model is formulated and solved by the Lagrange approach and Newmark-\(\beta \) integration algorithm, respectively. Numerical simulations are performed considering different fluid viscosities and crank speeds to investigate the nonlinear behavior of the mechanical press under various lubrication conditions. The results demonstrate the significance of frictional contact on the bearing thermal characteristics. Compared to the elastic deformation effect of transmission components, the variation of system position accuracy is primarily governed by the dynamics of mixed-lubricated joints. Furthermore, experimental studies are performed to validate the numerical findings.
期刊介绍:
The journal Multibody System Dynamics treats theoretical and computational methods in rigid and flexible multibody systems, their application, and the experimental procedures used to validate the theoretical foundations.
The research reported addresses computational and experimental aspects and their application to classical and emerging fields in science and technology. Both development and application aspects of multibody dynamics are relevant, in particular in the fields of control, optimization, real-time simulation, parallel computation, workspace and path planning, reliability, and durability. The journal also publishes articles covering application fields such as vehicle dynamics, aerospace technology, robotics and mechatronics, machine dynamics, crashworthiness, biomechanics, artificial intelligence, and system identification if they involve or contribute to the field of Multibody System Dynamics.