赤道贝塔面上线性阻尼波的频散图

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
P. Amol , D. Shankar
{"title":"赤道贝塔面上线性阻尼波的频散图","authors":"P. Amol ,&nbsp;D. Shankar","doi":"10.1016/j.ocemod.2024.102336","DOIUrl":null,"url":null,"abstract":"<div><p>The linear equations of motion are solved to obtain dispersion diagrams with Rayleigh friction (<span><math><mrow><mo>−</mo><mi>γ</mi><mi>u</mi></mrow></math></span>) and Laplacian friction (<span><math><mrow><mi>ν</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mi>u</mi></mrow></math></span>), the latter being solved numerically. Laplacian friction is more efficient at eliminating the short-wavelength Rossby waves, whereas Rayleigh friction is more effective at dissipating long-wavelength Rossby waves. For Rayleigh friction, short-wavelength Rossby waves do not exist at periods longer than the damping time scale (<span><math><mrow><mn>1</mn><mo>/</mo><mi>γ</mi></mrow></math></span>); for Laplacian friction, they do not exist for wavenumbers less than <span><math><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt><mo>/</mo><mrow><mo>(</mo><mn>2</mn><mroot><mrow><mi>ν</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>)</mo></mrow></mrow></math></span>. For both damping forms, the imaginary wavenumber (<span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>) no longer separates the upper branch (gravity waves) from the lower branch (Rossby waves) of the real wavenumber (<span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>), and the waves are damped at all frequencies. The two solutions of <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> do not overlap, and for Rayleigh damping, they meet at <span><math><msqrt><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mo>−</mo><msup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></math></span>, which roughly corresponds to <span><math><mo>∼</mo></math></span>13.7 days for very low friction. For very high Rayleigh damping, which is an unrealistic scenario, only gravity waves exist in the dispersion diagram. The consequence of adding friction, even if negligible, is that the discontinuity evident in the inviscid solution at the critical latitude no longer holds, or the critical latitude ceases to exist.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersion diagrams of linear damped waves on the equatorial beta plane\",\"authors\":\"P. Amol ,&nbsp;D. Shankar\",\"doi\":\"10.1016/j.ocemod.2024.102336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The linear equations of motion are solved to obtain dispersion diagrams with Rayleigh friction (<span><math><mrow><mo>−</mo><mi>γ</mi><mi>u</mi></mrow></math></span>) and Laplacian friction (<span><math><mrow><mi>ν</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mi>u</mi></mrow></math></span>), the latter being solved numerically. Laplacian friction is more efficient at eliminating the short-wavelength Rossby waves, whereas Rayleigh friction is more effective at dissipating long-wavelength Rossby waves. For Rayleigh friction, short-wavelength Rossby waves do not exist at periods longer than the damping time scale (<span><math><mrow><mn>1</mn><mo>/</mo><mi>γ</mi></mrow></math></span>); for Laplacian friction, they do not exist for wavenumbers less than <span><math><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt><mo>/</mo><mrow><mo>(</mo><mn>2</mn><mroot><mrow><mi>ν</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>)</mo></mrow></mrow></math></span>. For both damping forms, the imaginary wavenumber (<span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>) no longer separates the upper branch (gravity waves) from the lower branch (Rossby waves) of the real wavenumber (<span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>), and the waves are damped at all frequencies. The two solutions of <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> do not overlap, and for Rayleigh damping, they meet at <span><math><msqrt><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mo>−</mo><msup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></math></span>, which roughly corresponds to <span><math><mo>∼</mo></math></span>13.7 days for very low friction. For very high Rayleigh damping, which is an unrealistic scenario, only gravity waves exist in the dispersion diagram. The consequence of adding friction, even if negligible, is that the discontinuity evident in the inviscid solution at the critical latitude no longer holds, or the critical latitude ceases to exist.</p></div>\",\"PeriodicalId\":19457,\"journal\":{\"name\":\"Ocean Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Modelling\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1463500324000234\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324000234","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过对线性运动方程的求解,得到了具有瑞利摩擦力(-γu)和拉普拉斯摩擦力(ν∂xxu)的弥散图,后者是通过数值求解得到的。拉普拉斯摩擦能更有效地消除短波长的罗斯比波,而瑞利摩擦则能更有效地消散长波长的罗斯比波。对于瑞利摩擦,短波罗斯比波在周期大于阻尼时间尺度(1/γ)时不存在;对于拉普拉斯摩擦,短波罗斯比波在波长小于 3/(2ν3) 时不存在。对于这两种阻尼形式,虚波数(ki)不再分隔实波数(kr)的上分支(重力波)和下分支(罗斯比波),波在所有频率上都受到阻尼。kr 的两个解并不重叠,对于雷利阻尼,它们在 0.5-γ2 处相遇,这大致相当于极低摩擦力时的∼13.7 天。在雷利阻尼很高的情况下(这是一种不现实的情况),弥散图中只存在重力波。增加摩擦力(即使可以忽略不计)的后果是,临界纬度处的无粘性解中明显的不连续性不再成立,或者临界纬度不复存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dispersion diagrams of linear damped waves on the equatorial beta plane

The linear equations of motion are solved to obtain dispersion diagrams with Rayleigh friction (γu) and Laplacian friction (νxxu), the latter being solved numerically. Laplacian friction is more efficient at eliminating the short-wavelength Rossby waves, whereas Rayleigh friction is more effective at dissipating long-wavelength Rossby waves. For Rayleigh friction, short-wavelength Rossby waves do not exist at periods longer than the damping time scale (1/γ); for Laplacian friction, they do not exist for wavenumbers less than 3/(2ν3). For both damping forms, the imaginary wavenumber (ki) no longer separates the upper branch (gravity waves) from the lower branch (Rossby waves) of the real wavenumber (kr), and the waves are damped at all frequencies. The two solutions of kr do not overlap, and for Rayleigh damping, they meet at 0.5γ2, which roughly corresponds to 13.7 days for very low friction. For very high Rayleigh damping, which is an unrealistic scenario, only gravity waves exist in the dispersion diagram. The consequence of adding friction, even if negligible, is that the discontinuity evident in the inviscid solution at the critical latitude no longer holds, or the critical latitude ceases to exist.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信