人工方解石海条件下生长的珊瑚的分子和矿物质反应

IF 2.7 2区 地球科学 Q2 BIOLOGY
Geobiology Pub Date : 2024-02-02 DOI:10.1111/gbi.12586
Nicola Conci, Erika Griesshaber, Ramón E. Rivera-Vicéns, Wolfgang W. Schmahl, Sergio Vargas, Gert Wörheide
{"title":"人工方解石海条件下生长的珊瑚的分子和矿物质反应","authors":"Nicola Conci,&nbsp;Erika Griesshaber,&nbsp;Ramón E. Rivera-Vicéns,&nbsp;Wolfgang W. Schmahl,&nbsp;Sergio Vargas,&nbsp;Gert Wörheide","doi":"10.1111/gbi.12586","DOIUrl":null,"url":null,"abstract":"<p>The formation of skeletal structures composed of different calcium carbonate polymorphs (e.g. aragonite and calcite) appears to be both biologically and environmentally regulated. Among environmental factors influencing aragonite and calcite precipitation, changes in seawater conditions—primarily in the molar ratio of magnesium and calcium during so-called ‘Calcite’ (<i>m</i>Mg:<i>m</i>Ca below 2) or ‘Aragonite’ seas (<i>m</i>Mg:<i>m</i>Ca above 2)—have had profound impacts on the distribution and performance of marine calcifiers throughout Earth's history. Nonetheless, the fossil record shows that some species appear to have counteracted such changes and kept their skeleton polymorph unaltered. Here, the aragonitic octocoral <i>Heliopora coerulea</i> and the aragonitic scleractinian <i>Montipora digitata</i> were exposed to Calcite Sea-like <i>m</i>Mg:<i>m</i>Ca with various levels of magnesium and calcium concentration, and changes in both the mineralogy (i.e. CaCO<sub>3</sub> polymorph) and gene expression were monitored. Both species maintained aragonite deposition at lower <i>m</i>Mg:<i>m</i>Ca ratios, while concurrent calcite presence was only detected in <i>M. digitata</i>. Despite a strong variability between independent experimental replicates for both species, the expression for a set of putative calcification-related genes, including known components of the <i>M. digitata</i> skeleton organic matrix (SkOM), was found to consistently change at lower <i>m</i>Mg:<i>m</i>Ca. These results support the previously proposed involvements of the SkOM in counteracting decreases in seawater <i>m</i>Mg:<i>m</i>Ca. Although no consistent expression changes in calcium and magnesium transporters were observed, down-regulation calcium channels in <i>H. coerulea</i> in one experimental replicate and at an <i>m</i>Mg:<i>m</i>Ca of 2.5, pointing to a possible active calcium uptake regulation by the corals under altered <i>m</i>Mg:<i>m</i>Ca.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12586","citationCount":"0","resultStr":"{\"title\":\"Molecular and mineral responses of corals grown under artificial Calcite Sea conditions\",\"authors\":\"Nicola Conci,&nbsp;Erika Griesshaber,&nbsp;Ramón E. Rivera-Vicéns,&nbsp;Wolfgang W. Schmahl,&nbsp;Sergio Vargas,&nbsp;Gert Wörheide\",\"doi\":\"10.1111/gbi.12586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The formation of skeletal structures composed of different calcium carbonate polymorphs (e.g. aragonite and calcite) appears to be both biologically and environmentally regulated. Among environmental factors influencing aragonite and calcite precipitation, changes in seawater conditions—primarily in the molar ratio of magnesium and calcium during so-called ‘Calcite’ (<i>m</i>Mg:<i>m</i>Ca below 2) or ‘Aragonite’ seas (<i>m</i>Mg:<i>m</i>Ca above 2)—have had profound impacts on the distribution and performance of marine calcifiers throughout Earth's history. Nonetheless, the fossil record shows that some species appear to have counteracted such changes and kept their skeleton polymorph unaltered. Here, the aragonitic octocoral <i>Heliopora coerulea</i> and the aragonitic scleractinian <i>Montipora digitata</i> were exposed to Calcite Sea-like <i>m</i>Mg:<i>m</i>Ca with various levels of magnesium and calcium concentration, and changes in both the mineralogy (i.e. CaCO<sub>3</sub> polymorph) and gene expression were monitored. Both species maintained aragonite deposition at lower <i>m</i>Mg:<i>m</i>Ca ratios, while concurrent calcite presence was only detected in <i>M. digitata</i>. Despite a strong variability between independent experimental replicates for both species, the expression for a set of putative calcification-related genes, including known components of the <i>M. digitata</i> skeleton organic matrix (SkOM), was found to consistently change at lower <i>m</i>Mg:<i>m</i>Ca. These results support the previously proposed involvements of the SkOM in counteracting decreases in seawater <i>m</i>Mg:<i>m</i>Ca. Although no consistent expression changes in calcium and magnesium transporters were observed, down-regulation calcium channels in <i>H. coerulea</i> in one experimental replicate and at an <i>m</i>Mg:<i>m</i>Ca of 2.5, pointing to a possible active calcium uptake regulation by the corals under altered <i>m</i>Mg:<i>m</i>Ca.</p>\",\"PeriodicalId\":173,\"journal\":{\"name\":\"Geobiology\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12586\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geobiology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12586\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12586","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由不同碳酸钙多晶体(如文石和方解石)组成的骨骼结构的形成似乎受生物和环境的双重调节。在影响文石和方解石沉淀的环境因素中,海水条件的变化--主要是所谓的 "方解石海"(mMg:mCa 低于 2)或 "文石海"(mMg:mCa 高于 2)期间镁和钙摩尔比的变化--对整个地球历史上海洋钙化生物的分布和表现产生了深远的影响。然而,化石记录显示,一些物种似乎抵消了这种变化,并保持了其骨骼的多形态不变。在这里,霰石八瓣珊瑚 Heliopora coerulea 和霰石硬骨鱼 Montipora digitata 被暴露在不同镁和钙浓度水平的钙海样 mMg:mCa 中,矿物学(即 CaCO3 多形态)和基因表达的变化都受到了监测。两个物种在较低的 mMg:mCa 比值下都能保持文石沉积,而同时存在的方解石只在 M. digitata 中检测到。尽管两个物种的独立实验重复之间存在很大差异,但发现在 mMg:mCa 较低时,一组推测的钙化相关基因(包括 M. digitata 骨架有机基质(SkOM)的已知成分)的表达持续发生变化。这些结果支持了之前提出的 SkOM 参与抵消海水 mMg:mCa 下降的观点。虽然没有观察到钙和镁转运体的一致表达变化,但在一个实验重复中,当 mMg:mCa 为 2.5 时,H. coerulea 的钙通道下调,这表明在 mMg:mCa 变化的情况下,珊瑚可能会主动调节钙吸收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular and mineral responses of corals grown under artificial Calcite Sea conditions

Molecular and mineral responses of corals grown under artificial Calcite Sea conditions

The formation of skeletal structures composed of different calcium carbonate polymorphs (e.g. aragonite and calcite) appears to be both biologically and environmentally regulated. Among environmental factors influencing aragonite and calcite precipitation, changes in seawater conditions—primarily in the molar ratio of magnesium and calcium during so-called ‘Calcite’ (mMg:mCa below 2) or ‘Aragonite’ seas (mMg:mCa above 2)—have had profound impacts on the distribution and performance of marine calcifiers throughout Earth's history. Nonetheless, the fossil record shows that some species appear to have counteracted such changes and kept their skeleton polymorph unaltered. Here, the aragonitic octocoral Heliopora coerulea and the aragonitic scleractinian Montipora digitata were exposed to Calcite Sea-like mMg:mCa with various levels of magnesium and calcium concentration, and changes in both the mineralogy (i.e. CaCO3 polymorph) and gene expression were monitored. Both species maintained aragonite deposition at lower mMg:mCa ratios, while concurrent calcite presence was only detected in M. digitata. Despite a strong variability between independent experimental replicates for both species, the expression for a set of putative calcification-related genes, including known components of the M. digitata skeleton organic matrix (SkOM), was found to consistently change at lower mMg:mCa. These results support the previously proposed involvements of the SkOM in counteracting decreases in seawater mMg:mCa. Although no consistent expression changes in calcium and magnesium transporters were observed, down-regulation calcium channels in H. coerulea in one experimental replicate and at an mMg:mCa of 2.5, pointing to a possible active calcium uptake regulation by the corals under altered mMg:mCa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geobiology
Geobiology 生物-地球科学综合
CiteScore
6.80
自引率
5.40%
发文量
56
审稿时长
3 months
期刊介绍: The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time. Geobiology invites submission of high-quality articles in the following areas: Origins and evolution of life Co-evolution of the atmosphere, hydrosphere and biosphere The sedimentary rock record and geobiology of critical intervals Paleobiology and evolutionary ecology Biogeochemistry and global elemental cycles Microbe-mineral interactions Biomarkers Molecular ecology and phylogenetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信