Tim Binz , Matthias Hieber , Amru Hussein , Martin Saal
{"title":"带有随机风驱动边界条件的原始方程","authors":"Tim Binz , Matthias Hieber , Amru Hussein , Martin Saal","doi":"10.1016/j.matpur.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>The primitive equations for geophysical flows are studied under the influence of <em>stochastic wind driven boundary conditions</em> modeled by a cylindrical Wiener process. We adapt an approach by Da Prato and Zabczyk for stochastic boundary value problems to define a notion of solutions. Then a rigorous treatment of these stochastic boundary conditions, which combines stochastic and deterministic methods, yields that these equations admit a unique, local pathwise solution within the anisotropic <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span>-<span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>z</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>-setting. This solution is constructed in critical spaces.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"183 ","pages":"Pages 76-101"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000072/pdfft?md5=30fb9d977114954181c690ca0fa1ea9e&pid=1-s2.0-S0021782424000072-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The primitive equations with stochastic wind driven boundary conditions\",\"authors\":\"Tim Binz , Matthias Hieber , Amru Hussein , Martin Saal\",\"doi\":\"10.1016/j.matpur.2024.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The primitive equations for geophysical flows are studied under the influence of <em>stochastic wind driven boundary conditions</em> modeled by a cylindrical Wiener process. We adapt an approach by Da Prato and Zabczyk for stochastic boundary value problems to define a notion of solutions. Then a rigorous treatment of these stochastic boundary conditions, which combines stochastic and deterministic methods, yields that these equations admit a unique, local pathwise solution within the anisotropic <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span>-<span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>z</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>-setting. This solution is constructed in critical spaces.</p></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"183 \",\"pages\":\"Pages 76-101\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000072/pdfft?md5=30fb9d977114954181c690ca0fa1ea9e&pid=1-s2.0-S0021782424000072-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000072\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000072","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在以圆柱维纳过程为模型的随机风驱动边界条件的影响下,研究了地球物理流的原始方程。我们采用 Da Prato 和 Zabczyk 针对随机边界值问题提出的方法来定义解的概念。然后,结合随机和确定性方法,对这些随机边界条件进行严格处理,得出这些方程在各向异性的 Ltq-Hz-1,pLxyp 设定内有一个唯一的局部路径解。这个解是在临界空间中构建的。
The primitive equations with stochastic wind driven boundary conditions
The primitive equations for geophysical flows are studied under the influence of stochastic wind driven boundary conditions modeled by a cylindrical Wiener process. We adapt an approach by Da Prato and Zabczyk for stochastic boundary value problems to define a notion of solutions. Then a rigorous treatment of these stochastic boundary conditions, which combines stochastic and deterministic methods, yields that these equations admit a unique, local pathwise solution within the anisotropic --setting. This solution is constructed in critical spaces.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.