Ran Tao , Yuhan Guo , Jiahao Li , Junrong Luo , Qingsheng Yang , Yu Chen , Wenwang Wu
{"title":"具有多种变形模式的水凝胶驱动超材料的膨胀力学","authors":"Ran Tao , Yuhan Guo , Jiahao Li , Junrong Luo , Qingsheng Yang , Yu Chen , Wenwang Wu","doi":"10.1016/j.giant.2024.100243","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogel is widely employed in flexible electronics and soft robotics as soft mechanical material. Previous reports exploited the swelling properties of hydrogel to achieve large negative deformations, but few reports exhibit multiple deformation modes. This paper designs two-dimensional metamaterials that convert hydrogel swelling deformation into bending deformation, including positive/negative swelling, isotropic/anisotropic, and gradient/bending deformation modes. The regulation of hydrogel swelling on the negative expansion deformation of metamaterials is explored through the theoretical model and finite element analysis. The corresponding relationship between the microstructure deformation and the band gap change during the hydration process is obtained. Inspired by kirigami, we proposed a self-assembly model with substrate expansion-driven three-dimensional microstructure. The results show that the deformation modes of metamaterials may be interconverted through structural design. The band gap can be tuned by swelling deformation.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"17 ","pages":"Article 100243"},"PeriodicalIF":5.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000080/pdfft?md5=1ca6118ca29174712314f66da9947e4d&pid=1-s2.0-S2666542524000080-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Expansion mechanics of hydrogel-driven metamaterials with multiple deformation modes\",\"authors\":\"Ran Tao , Yuhan Guo , Jiahao Li , Junrong Luo , Qingsheng Yang , Yu Chen , Wenwang Wu\",\"doi\":\"10.1016/j.giant.2024.100243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrogel is widely employed in flexible electronics and soft robotics as soft mechanical material. Previous reports exploited the swelling properties of hydrogel to achieve large negative deformations, but few reports exhibit multiple deformation modes. This paper designs two-dimensional metamaterials that convert hydrogel swelling deformation into bending deformation, including positive/negative swelling, isotropic/anisotropic, and gradient/bending deformation modes. The regulation of hydrogel swelling on the negative expansion deformation of metamaterials is explored through the theoretical model and finite element analysis. The corresponding relationship between the microstructure deformation and the band gap change during the hydration process is obtained. Inspired by kirigami, we proposed a self-assembly model with substrate expansion-driven three-dimensional microstructure. The results show that the deformation modes of metamaterials may be interconverted through structural design. The band gap can be tuned by swelling deformation.</p></div>\",\"PeriodicalId\":34151,\"journal\":{\"name\":\"GIANT\",\"volume\":\"17 \",\"pages\":\"Article 100243\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000080/pdfft?md5=1ca6118ca29174712314f66da9947e4d&pid=1-s2.0-S2666542524000080-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIANT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000080\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000080","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Expansion mechanics of hydrogel-driven metamaterials with multiple deformation modes
Hydrogel is widely employed in flexible electronics and soft robotics as soft mechanical material. Previous reports exploited the swelling properties of hydrogel to achieve large negative deformations, but few reports exhibit multiple deformation modes. This paper designs two-dimensional metamaterials that convert hydrogel swelling deformation into bending deformation, including positive/negative swelling, isotropic/anisotropic, and gradient/bending deformation modes. The regulation of hydrogel swelling on the negative expansion deformation of metamaterials is explored through the theoretical model and finite element analysis. The corresponding relationship between the microstructure deformation and the band gap change during the hydration process is obtained. Inspired by kirigami, we proposed a self-assembly model with substrate expansion-driven three-dimensional microstructure. The results show that the deformation modes of metamaterials may be interconverted through structural design. The band gap can be tuned by swelling deformation.
期刊介绍:
Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.