Griselda A. Rivera , Rogelio Rodriguez , Susana Vargas
{"title":"确定基于 HAp-胶原-葡萄糖的双层电容器输出曲线的参数(能量、电荷、电场、形状);检测糖尿病的可能性","authors":"Griselda A. Rivera , Rogelio Rodriguez , Susana Vargas","doi":"10.1016/j.sbsr.2024.100626","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical values of important parameters associated with a piezoelectric material containing an electrolyte and subjected to external stress were obtained; the applied stress produced, almost instantly, induced charges on the material's surface; these charges move the ions of the electrolyte toward the charged surfaces forming the electric double layer EDL; these two charged surfaces give place to the formation, in the interior of the material, of a particular type of capacitor called double layer capacitor DLC. The values of these parameters associated with DLC show interesting and important characteristics: DLC can store considerable amounts of energy and electric charge, as well as high electric fields; these characteristics can explain the extreme sensitivity of the human body to sense extraordinarily small mechanical actions. While the time to induce the charge on the surface τ<sub>e</sub> is instantaneous, the time τ<sub>i</sub> to form EDL is not; this time controls the shape of the output voltage signals. The presence of glucose modifies the piezoelectric signals allowing to use these profiles to diagnose diabetes. Additionally, expressions were obtained for the chemical capacitance C<sub>μ</sub> as a function of voltage and glucose concentration.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"43 ","pages":"Article 100626"},"PeriodicalIF":5.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000084/pdfft?md5=95704545f8ff2383ea138863408d93c3&pid=1-s2.0-S2214180424000084-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Parameters determination (energy, charge, electric field, shape) of output profiles of HAp-collagen-glucose-based double layer capacitors; possibility for diabetes detection\",\"authors\":\"Griselda A. Rivera , Rogelio Rodriguez , Susana Vargas\",\"doi\":\"10.1016/j.sbsr.2024.100626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Numerical values of important parameters associated with a piezoelectric material containing an electrolyte and subjected to external stress were obtained; the applied stress produced, almost instantly, induced charges on the material's surface; these charges move the ions of the electrolyte toward the charged surfaces forming the electric double layer EDL; these two charged surfaces give place to the formation, in the interior of the material, of a particular type of capacitor called double layer capacitor DLC. The values of these parameters associated with DLC show interesting and important characteristics: DLC can store considerable amounts of energy and electric charge, as well as high electric fields; these characteristics can explain the extreme sensitivity of the human body to sense extraordinarily small mechanical actions. While the time to induce the charge on the surface τ<sub>e</sub> is instantaneous, the time τ<sub>i</sub> to form EDL is not; this time controls the shape of the output voltage signals. The presence of glucose modifies the piezoelectric signals allowing to use these profiles to diagnose diabetes. Additionally, expressions were obtained for the chemical capacitance C<sub>μ</sub> as a function of voltage and glucose concentration.</p></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"43 \",\"pages\":\"Article 100626\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000084/pdfft?md5=95704545f8ff2383ea138863408d93c3&pid=1-s2.0-S2214180424000084-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Parameters determination (energy, charge, electric field, shape) of output profiles of HAp-collagen-glucose-based double layer capacitors; possibility for diabetes detection
Numerical values of important parameters associated with a piezoelectric material containing an electrolyte and subjected to external stress were obtained; the applied stress produced, almost instantly, induced charges on the material's surface; these charges move the ions of the electrolyte toward the charged surfaces forming the electric double layer EDL; these two charged surfaces give place to the formation, in the interior of the material, of a particular type of capacitor called double layer capacitor DLC. The values of these parameters associated with DLC show interesting and important characteristics: DLC can store considerable amounts of energy and electric charge, as well as high electric fields; these characteristics can explain the extreme sensitivity of the human body to sense extraordinarily small mechanical actions. While the time to induce the charge on the surface τe is instantaneous, the time τi to form EDL is not; this time controls the shape of the output voltage signals. The presence of glucose modifies the piezoelectric signals allowing to use these profiles to diagnose diabetes. Additionally, expressions were obtained for the chemical capacitance Cμ as a function of voltage and glucose concentration.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.