支持非凸的非负掩码收敛双变量细分方案

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Li Cheng
{"title":"支持非凸的非负掩码收敛双变量细分方案","authors":"Li Cheng","doi":"10.1016/j.acha.2024.101636","DOIUrl":null,"url":null,"abstract":"<div><p>Recently we have characterized the convergence of bivariate subdivision scheme with nonnegative mask whose support is convex by means of the so-called connectivity of a square matrix, which is derived by a given mask. The convergence in this case can be checked in linear time with respected to the size of a square matrix. This paper will focus on the characterization of such schemes with non-convex supports.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"70 ","pages":"Article 101636"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergent bivariate subdivision scheme with nonnegative mask whose support is non-convex\",\"authors\":\"Li Cheng\",\"doi\":\"10.1016/j.acha.2024.101636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently we have characterized the convergence of bivariate subdivision scheme with nonnegative mask whose support is convex by means of the so-called connectivity of a square matrix, which is derived by a given mask. The convergence in this case can be checked in linear time with respected to the size of a square matrix. This paper will focus on the characterization of such schemes with non-convex supports.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"70 \",\"pages\":\"Article 101636\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000137\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000137","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

最近,我们通过由给定掩码导出的所谓正方形矩阵的连通性,确定了具有非负掩码的双变量细分方案的收敛性。这种情况下的收敛性可以在尊重方阵大小的线性时间内检验。本文将重点讨论这种具有非凸支持的方案的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergent bivariate subdivision scheme with nonnegative mask whose support is non-convex

Recently we have characterized the convergence of bivariate subdivision scheme with nonnegative mask whose support is convex by means of the so-called connectivity of a square matrix, which is derived by a given mask. The convergence in this case can be checked in linear time with respected to the size of a square matrix. This paper will focus on the characterization of such schemes with non-convex supports.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信