{"title":"多信使时代的中子星测量","authors":"Stefano Ascenzi , Vanessa Graber , Nanda Rea","doi":"10.1016/j.astropartphys.2024.102935","DOIUrl":null,"url":null,"abstract":"<div><p>Neutron stars are compact and dense celestial objects that offer the unique opportunity to explore matter and its interactions under conditions that cannot be reproduced elsewhere in the Universe. Their extreme gravitational, rotational and magnetic energy reservoirs fuel the large variety of their emission, which encompasses all available multi-messenger tracers: electromagnetic and gravitational waves, neutrinos, and cosmic rays. However, accurately measuring global neutron-star properties such as mass, radius, and moment of inertia poses significant challenges. Probing internal characteristics such as the crustal composition or superfluid physics is even more complex. This article provides a comprehensive review of the different methods employed to measure neutron-star characteristics and the level of reliance on theoretical models. Understanding these measurement techniques is crucial for advancing our knowledge of neutron-star physics. We also highlight the importance of employing independent methods and adopting a multi-messenger approach to gather complementary data from various observable phenomena as exemplified by the recent breakthroughs in gravitational-wave astronomy and the landmark detection of a binary neutron-star merger. Consolidating the current state of knowledge on neutron-star measurements will enable an accurate interpretation of the current data and errors, and better planning for future observations and experiments.</p></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"158 ","pages":"Article 102935"},"PeriodicalIF":4.2000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutron-star measurements in the multi-messenger Era\",\"authors\":\"Stefano Ascenzi , Vanessa Graber , Nanda Rea\",\"doi\":\"10.1016/j.astropartphys.2024.102935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neutron stars are compact and dense celestial objects that offer the unique opportunity to explore matter and its interactions under conditions that cannot be reproduced elsewhere in the Universe. Their extreme gravitational, rotational and magnetic energy reservoirs fuel the large variety of their emission, which encompasses all available multi-messenger tracers: electromagnetic and gravitational waves, neutrinos, and cosmic rays. However, accurately measuring global neutron-star properties such as mass, radius, and moment of inertia poses significant challenges. Probing internal characteristics such as the crustal composition or superfluid physics is even more complex. This article provides a comprehensive review of the different methods employed to measure neutron-star characteristics and the level of reliance on theoretical models. Understanding these measurement techniques is crucial for advancing our knowledge of neutron-star physics. We also highlight the importance of employing independent methods and adopting a multi-messenger approach to gather complementary data from various observable phenomena as exemplified by the recent breakthroughs in gravitational-wave astronomy and the landmark detection of a binary neutron-star merger. Consolidating the current state of knowledge on neutron-star measurements will enable an accurate interpretation of the current data and errors, and better planning for future observations and experiments.</p></div>\",\"PeriodicalId\":55439,\"journal\":{\"name\":\"Astroparticle Physics\",\"volume\":\"158 \",\"pages\":\"Article 102935\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927650524000124\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927650524000124","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Neutron-star measurements in the multi-messenger Era
Neutron stars are compact and dense celestial objects that offer the unique opportunity to explore matter and its interactions under conditions that cannot be reproduced elsewhere in the Universe. Their extreme gravitational, rotational and magnetic energy reservoirs fuel the large variety of their emission, which encompasses all available multi-messenger tracers: electromagnetic and gravitational waves, neutrinos, and cosmic rays. However, accurately measuring global neutron-star properties such as mass, radius, and moment of inertia poses significant challenges. Probing internal characteristics such as the crustal composition or superfluid physics is even more complex. This article provides a comprehensive review of the different methods employed to measure neutron-star characteristics and the level of reliance on theoretical models. Understanding these measurement techniques is crucial for advancing our knowledge of neutron-star physics. We also highlight the importance of employing independent methods and adopting a multi-messenger approach to gather complementary data from various observable phenomena as exemplified by the recent breakthroughs in gravitational-wave astronomy and the landmark detection of a binary neutron-star merger. Consolidating the current state of knowledge on neutron-star measurements will enable an accurate interpretation of the current data and errors, and better planning for future observations and experiments.
期刊介绍:
Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.