Z5n 中的大无和集

IF 0.9 2区 数学 Q2 MATHEMATICS
Vsevolod F. Lev
{"title":"Z5n 中的大无和集","authors":"Vsevolod F. Lev","doi":"10.1016/j.jcta.2024.105865","DOIUrl":null,"url":null,"abstract":"<div><p>It is well-known that for a prime <span><math><mi>p</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span> and integer <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span><span>, the maximum possible size of a sum-free subset of the elementary abelian group </span><span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mspace></mspace><mo>(</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>. However, the matching stability result is known for <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> only. We consider the first open case <span><math><mi>p</mi><mo>=</mo><mn>5</mn></math></span> showing that if <span><math><mi>A</mi><mo>⊆</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is a sum-free subset with <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>&gt;</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><msup><mrow><mn>5</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, then there are a subgroup <span><math><mi>H</mi><mo>&lt;</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> of size <span><math><mo>|</mo><mi>H</mi><mo>|</mo><mo>=</mo><msup><mrow><mn>5</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> and an element <span><math><mi>e</mi><mo>∉</mo><mi>H</mi></math></span> such that <span><math><mi>A</mi><mo>⊆</mo><mo>(</mo><mi>e</mi><mo>+</mo><mi>H</mi><mo>)</mo><mo>∪</mo><mo>(</mo><mo>−</mo><mi>e</mi><mo>+</mo><mi>H</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"205 ","pages":"Article 105865"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large sum-free sets in Z5n\",\"authors\":\"Vsevolod F. Lev\",\"doi\":\"10.1016/j.jcta.2024.105865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is well-known that for a prime <span><math><mi>p</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span> and integer <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span><span>, the maximum possible size of a sum-free subset of the elementary abelian group </span><span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mspace></mspace><mo>(</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>. However, the matching stability result is known for <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> only. We consider the first open case <span><math><mi>p</mi><mo>=</mo><mn>5</mn></math></span> showing that if <span><math><mi>A</mi><mo>⊆</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is a sum-free subset with <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>&gt;</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><msup><mrow><mn>5</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, then there are a subgroup <span><math><mi>H</mi><mo>&lt;</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> of size <span><math><mo>|</mo><mi>H</mi><mo>|</mo><mo>=</mo><msup><mrow><mn>5</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> and an element <span><math><mi>e</mi><mo>∉</mo><mi>H</mi></math></span> such that <span><math><mi>A</mi><mo>⊆</mo><mo>(</mo><mi>e</mi><mo>+</mo><mi>H</mi><mo>)</mo><mo>∪</mo><mo>(</mo><mo>−</mo><mi>e</mi><mo>+</mo><mi>H</mi><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"205 \",\"pages\":\"Article 105865\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000049\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000049","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,对于素数 p≡2(mod3)和整数 n≥1,初等无方组 Zpn 的无和子集的最大可能大小为 13(p+1)pn-1。然而,已知的匹配稳定性结果仅适用于 p=2。我们考虑第一种开放情况 p=5 表明,如果 A⊆Z5n 是|A|>32⋅5n-1 的无和子集,那么存在大小为 |H|=5n-1的子群 H<Z5n 和元素 e∉H,使得 A⊆(e+H)∪(-e+H)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large sum-free sets in Z5n

It is well-known that for a prime p2(mod3) and integer n1, the maximum possible size of a sum-free subset of the elementary abelian group Zpn is 13(p+1)pn1. However, the matching stability result is known for p=2 only. We consider the first open case p=5 showing that if AZ5n is a sum-free subset with |A|>325n1, then there are a subgroup H<Z5n of size |H|=5n1 and an element eH such that A(e+H)(e+H).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信