块计数序列并非纯粹的形态序列

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Antoine Abram , Yining Hu , Shuo Li
{"title":"块计数序列并非纯粹的形态序列","authors":"Antoine Abram ,&nbsp;Yining Hu ,&nbsp;Shuo Li","doi":"10.1016/j.aam.2024.102673","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>m</em> be a positive integer larger than 1, <em>w</em> be a finite word over <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>;</mo><mi>w</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> represent the number of occurrences of the word <em>w</em> in the <em>m</em>-expansion of the non-negative integer <em>n</em> (mod <em>m</em>). In this article, we present an efficient algorithm for generating all sequences <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>;</mo><mi>w</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span>; then, assuming that <em>m</em> is a prime number, we prove that all these sequences are <em>m</em>-uniformly but not purely morphic, except for words <em>w</em> satisfying <span><math><mo>|</mo><mi>w</mi><mo>|</mo><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>w</mi><mo>≠</mo><mn>0</mn></math></span>; finally, under the same assumption of <em>m</em> as before, we prove that the power series <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>;</mo><mi>w</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is algebraic of degree <em>m</em> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Block-counting sequences are not purely morphic\",\"authors\":\"Antoine Abram ,&nbsp;Yining Hu ,&nbsp;Shuo Li\",\"doi\":\"10.1016/j.aam.2024.102673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>m</em> be a positive integer larger than 1, <em>w</em> be a finite word over <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>;</mo><mi>w</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> represent the number of occurrences of the word <em>w</em> in the <em>m</em>-expansion of the non-negative integer <em>n</em> (mod <em>m</em>). In this article, we present an efficient algorithm for generating all sequences <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>;</mo><mi>w</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span>; then, assuming that <em>m</em> is a prime number, we prove that all these sequences are <em>m</em>-uniformly but not purely morphic, except for words <em>w</em> satisfying <span><math><mo>|</mo><mi>w</mi><mo>|</mo><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>w</mi><mo>≠</mo><mn>0</mn></math></span>; finally, under the same assumption of <em>m</em> as before, we prove that the power series <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>;</mo><mi>w</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is algebraic of degree <em>m</em> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000046\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000046","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设 m 是大于 1 的正整数,w 是 {0,1,⋯,m-1} 上的有限词,am;w(n) 表示词 w 在非负整数 n 的 m 展开中出现的次数(mod m)。在本文中,我们提出了一种生成所有序列 (am;w(n))n∈N 的高效算法;然后,假设 m 是素数,我们证明除了满足 |w|=1 和 w≠0 的词 w 之外,所有这些序列都是 m-Uniformly 的,但不是纯形态的;最后,在与前面相同的 m 假设下,我们证明幂级数∑i=0∞am;w(n)tn 是 Fm(t) 上 m 阶代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Block-counting sequences are not purely morphic

Let m be a positive integer larger than 1, w be a finite word over {0,1,,m1} and am;w(n) represent the number of occurrences of the word w in the m-expansion of the non-negative integer n (mod m). In this article, we present an efficient algorithm for generating all sequences (am;w(n))nN; then, assuming that m is a prime number, we prove that all these sequences are m-uniformly but not purely morphic, except for words w satisfying |w|=1 and w0; finally, under the same assumption of m as before, we prove that the power series i=0am;w(n)tn is algebraic of degree m over Fm(t).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信