{"title":"用于动态光学和热调节的生物启发可伸缩聚合物","authors":"Yanzhao Yang, Yuan Liu, Yuanhao Chen, Ling Wang, Wei Feng","doi":"10.1002/aesr.202300289","DOIUrl":null,"url":null,"abstract":"<p>Elaborated optical and thermal modulatory systems are of great importance to the survival and evolution of organisms in nature. Inspired by these natural intelligent systems, researchers have made great efforts for developing stretchable polymers and exploring their applications in fields of communication, dynamic camouflage, thermal management, and others. Herein, an up-to-date account of the advancements in bioinspired stretchable polymers for dynamic optical and thermal regulation is provided. First, stretchable polymers for dynamic structural colors are presented, including cholesteric liquid crystal elastomers, photonic crystal elastomers, and emerging photonic polymers. Then stretchable polymers for dynamic infrared emissivity are introduced, which are achieved by stretch-induced wrinkled-flat surface or stretch-induced cracked surface. Third, stretchable polymers for dynamic thermal management are discussed, focusing on tunable solar transmittance and dynamic radiative cooling. Moreover, the perspectives on the opportunities and challenges for future research directions of bioinspired stretchable polymers are presented at the end.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202300289","citationCount":"0","resultStr":"{\"title\":\"Bioinspired Stretchable Polymers for Dynamic Optical and Thermal Regulation\",\"authors\":\"Yanzhao Yang, Yuan Liu, Yuanhao Chen, Ling Wang, Wei Feng\",\"doi\":\"10.1002/aesr.202300289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Elaborated optical and thermal modulatory systems are of great importance to the survival and evolution of organisms in nature. Inspired by these natural intelligent systems, researchers have made great efforts for developing stretchable polymers and exploring their applications in fields of communication, dynamic camouflage, thermal management, and others. Herein, an up-to-date account of the advancements in bioinspired stretchable polymers for dynamic optical and thermal regulation is provided. First, stretchable polymers for dynamic structural colors are presented, including cholesteric liquid crystal elastomers, photonic crystal elastomers, and emerging photonic polymers. Then stretchable polymers for dynamic infrared emissivity are introduced, which are achieved by stretch-induced wrinkled-flat surface or stretch-induced cracked surface. Third, stretchable polymers for dynamic thermal management are discussed, focusing on tunable solar transmittance and dynamic radiative cooling. Moreover, the perspectives on the opportunities and challenges for future research directions of bioinspired stretchable polymers are presented at the end.</p>\",\"PeriodicalId\":29794,\"journal\":{\"name\":\"Advanced Energy and Sustainability Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202300289\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy and Sustainability Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202300289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202300289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Bioinspired Stretchable Polymers for Dynamic Optical and Thermal Regulation
Elaborated optical and thermal modulatory systems are of great importance to the survival and evolution of organisms in nature. Inspired by these natural intelligent systems, researchers have made great efforts for developing stretchable polymers and exploring their applications in fields of communication, dynamic camouflage, thermal management, and others. Herein, an up-to-date account of the advancements in bioinspired stretchable polymers for dynamic optical and thermal regulation is provided. First, stretchable polymers for dynamic structural colors are presented, including cholesteric liquid crystal elastomers, photonic crystal elastomers, and emerging photonic polymers. Then stretchable polymers for dynamic infrared emissivity are introduced, which are achieved by stretch-induced wrinkled-flat surface or stretch-induced cracked surface. Third, stretchable polymers for dynamic thermal management are discussed, focusing on tunable solar transmittance and dynamic radiative cooling. Moreover, the perspectives on the opportunities and challenges for future research directions of bioinspired stretchable polymers are presented at the end.
期刊介绍:
Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields.
In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including:
CAS: Chemical Abstracts Service (ACS)
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (Clarivate Analytics)
INSPEC (IET)
Web of Science (Clarivate Analytics).