通过 Knoevenagel 缩合合成香豆素共轭寡核苷酸以制备寡核苷酸库

IF 1.5 4区 医学 Q4 CHEMISTRY, MEDICINAL
Takashi Osawa, Satoshi Obika
{"title":"通过 Knoevenagel 缩合合成香豆素共轭寡核苷酸以制备寡核苷酸库","authors":"Takashi Osawa, Satoshi Obika","doi":"10.1248/cpb.c23-00295","DOIUrl":null,"url":null,"abstract":"</p><p>DNA-encoded libraries (DELs) are attracting attention as a screening tool in the early stages of drug discovery. In the development of DELs, drug candidate compounds are chemically synthesized on barcode DNA. Therefore, it is important to perform the synthesis under mild conditions so as to not damage the DNA. On the other hand, coumarins are gaining increasing research focus not only because they possess excellent fluorescence properties, but also because many medicines contain a coumarin skeleton. Among the various reactions developed for the synthesis of coumarins thus far, Knoevenagel condensation followed by intramolecular cyclization under mild conditions can yield coumarins. In this study, we developed a new synthetic method for preparing a coumarin-conjugated oligonucleotide library <i>via</i> Knoevenagel condensation. The results showed that coumarins substituted at the 5-, 6-, 7-, or 8-positions could be constructed on DNA to afford a total of 26 coumarin-conjugated DNAs. Moreover, this method was compatible with enzymatic ligation, demonstrating its utility in DEL synthesis. The developed strategy for the construction of coumarin scaffolds based on Knoevenagel condensation may contribute to the use of DELs in drug discovery and medicinal chemistry.</p>\n<p></p>\n<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/cpb/72/2/72_c23-00295/figure/72_c23-00295.png\"/>\n<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Coumarin-Conjugated Oligonucleotides via Knoevenagel Condensation to Prepare an Oligonucleotide Library\",\"authors\":\"Takashi Osawa, Satoshi Obika\",\"doi\":\"10.1248/cpb.c23-00295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>DNA-encoded libraries (DELs) are attracting attention as a screening tool in the early stages of drug discovery. In the development of DELs, drug candidate compounds are chemically synthesized on barcode DNA. Therefore, it is important to perform the synthesis under mild conditions so as to not damage the DNA. On the other hand, coumarins are gaining increasing research focus not only because they possess excellent fluorescence properties, but also because many medicines contain a coumarin skeleton. Among the various reactions developed for the synthesis of coumarins thus far, Knoevenagel condensation followed by intramolecular cyclization under mild conditions can yield coumarins. In this study, we developed a new synthetic method for preparing a coumarin-conjugated oligonucleotide library <i>via</i> Knoevenagel condensation. The results showed that coumarins substituted at the 5-, 6-, 7-, or 8-positions could be constructed on DNA to afford a total of 26 coumarin-conjugated DNAs. Moreover, this method was compatible with enzymatic ligation, demonstrating its utility in DEL synthesis. The developed strategy for the construction of coumarin scaffolds based on Knoevenagel condensation may contribute to the use of DELs in drug discovery and medicinal chemistry.</p>\\n<p></p>\\n<img alt=\\\"\\\" src=\\\"https://www.jstage.jst.go.jp/pub/cpb/72/2/72_c23-00295/figure/72_c23-00295.png\\\"/>\\n<span style=\\\"padding-left:5px;\\\">Fullsize Image</span>\",\"PeriodicalId\":9773,\"journal\":{\"name\":\"Chemical & pharmaceutical bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical & pharmaceutical bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1248/cpb.c23-00295\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/cpb.c23-00295","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

DNA 编码文库(DELs)作为药物发现早期阶段的筛选工具备受关注。在 DELs 的开发过程中,候选药物化合物是在条形码 DNA 上进行化学合成的。因此,必须在温和的条件下进行合成,以免损伤 DNA。另一方面,香豆素越来越受到研究的关注,这不仅是因为它们具有优异的荧光特性,还因为许多药物都含有香豆素骨架。在迄今为止合成香豆素的各种反应中,Knoevenagel 缩合反应和温和条件下的分子内环化反应可以生成香豆素。在本研究中,我们开发了一种新的合成方法,通过 Knoevenagel 缩合反应制备香豆素共轭寡核苷酸库。结果表明,在 5、6、7 或 8 位上取代的香豆素可在 DNA 上构建出总共 26 种香豆素共轭 DNA。此外,这种方法与酶连接兼容,证明了它在 DEL 合成中的实用性。基于 Knoevenagel 缩合技术开发的香豆素支架构建策略可能有助于 DELs 在药物发现和药物化学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of Coumarin-Conjugated Oligonucleotides via Knoevenagel Condensation to Prepare an Oligonucleotide Library

DNA-encoded libraries (DELs) are attracting attention as a screening tool in the early stages of drug discovery. In the development of DELs, drug candidate compounds are chemically synthesized on barcode DNA. Therefore, it is important to perform the synthesis under mild conditions so as to not damage the DNA. On the other hand, coumarins are gaining increasing research focus not only because they possess excellent fluorescence properties, but also because many medicines contain a coumarin skeleton. Among the various reactions developed for the synthesis of coumarins thus far, Knoevenagel condensation followed by intramolecular cyclization under mild conditions can yield coumarins. In this study, we developed a new synthetic method for preparing a coumarin-conjugated oligonucleotide library via Knoevenagel condensation. The results showed that coumarins substituted at the 5-, 6-, 7-, or 8-positions could be constructed on DNA to afford a total of 26 coumarin-conjugated DNAs. Moreover, this method was compatible with enzymatic ligation, demonstrating its utility in DEL synthesis. The developed strategy for the construction of coumarin scaffolds based on Knoevenagel condensation may contribute to the use of DELs in drug discovery and medicinal chemistry.

Fullsize Image
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
132
审稿时长
1.7 months
期刊介绍: The CPB covers various chemical topics in the pharmaceutical and health sciences fields dealing with biologically active compounds, natural products, and medicines, while BPB deals with a wide range of biological topics in the pharmaceutical and health sciences fields including scientific research from basic to clinical studies. For details of their respective scopes, please refer to the submission topic categories below. Topics: Organic chemistry In silico science Inorganic chemistry Pharmacognosy Health statistics Forensic science Biochemistry Pharmacology Pharmaceutical care and science Medicinal chemistry Analytical chemistry Physical pharmacy Natural product chemistry Toxicology Environmental science Molecular and cellular biology Biopharmacy and pharmacokinetics Pharmaceutical education Chemical biology Physical chemistry Pharmaceutical engineering Epidemiology Hygiene Regulatory science Immunology and microbiology Clinical pharmacy Miscellaneous.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信