{"title":"考虑脉冲接种和消除干扰的 SIRS 模型稳定性分析","authors":"Yanli Ma, Xuewu Zuo","doi":"10.1155/2024/6617911","DOIUrl":null,"url":null,"abstract":"It is well known that many natural phenomena and human activities do exhibit impulsive effects in the fields of epidemiology. At the same time, compared with a single control strategy, it is obvious that the multiple control strategies are more beneficial to restrain the spread of infectious diseases. In this paper, we consider pulse vaccination and pulse elimination strategies at the same time and establish an SIRS epidemic model with standard incidence. Firstly, according to the stroboscopic mapping method of the discrete dynamical system, the disease-free <svg height=\"9.01194pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.96212 8.41168 9.01194\" width=\"8.41168pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> periodic solution of the model under the condition of pulse vaccination and pulse elimination is obtained. Secondly, the basic reproductive number <svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 13.1624 11.927\" width=\"13.1624pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"></path></g></svg> is defined, and the local asymptotic stability of the disease-free <svg height=\"9.01194pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.96212 8.41168 9.01194\" width=\"8.41168pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-85\"></use></g></svg> periodic solution is proved by Floquet theory for <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 24.295 11.927\" width=\"24.295pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.664,0)\"></path></g></svg><span></span><span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"27.8771838 -8.6359 6.422 11.927\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.927,0)\"></path></g></svg>.</span></span> Finally, based on the impulsive differential inequality theory, the global asymptotic stability of the disease-free <svg height=\"9.01194pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.96212 8.41168 9.01194\" width=\"8.41168pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-85\"></use></g></svg> periodic solution is given for <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 24.295 11.927\" width=\"24.295pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.664,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"27.8771838 -8.6359 6.422 11.927\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.927,0)\"><use xlink:href=\"#g113-50\"></use></g></svg>,</span></span> and the disease dies out eventually. The results show that in order to stop the disease epidemic, it is necessary to choose the appropriate vaccination rate and elimination rate and the appropriate impulsive period.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Analysis of SIRS Model considering Pulse Vaccination and Elimination Disturbance\",\"authors\":\"Yanli Ma, Xuewu Zuo\",\"doi\":\"10.1155/2024/6617911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that many natural phenomena and human activities do exhibit impulsive effects in the fields of epidemiology. At the same time, compared with a single control strategy, it is obvious that the multiple control strategies are more beneficial to restrain the spread of infectious diseases. In this paper, we consider pulse vaccination and pulse elimination strategies at the same time and establish an SIRS epidemic model with standard incidence. Firstly, according to the stroboscopic mapping method of the discrete dynamical system, the disease-free <svg height=\\\"9.01194pt\\\" style=\\\"vertical-align:-0.04981995pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.96212 8.41168 9.01194\\\" width=\\\"8.41168pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> periodic solution of the model under the condition of pulse vaccination and pulse elimination is obtained. Secondly, the basic reproductive number <svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 13.1624 11.927\\\" width=\\\"13.1624pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.086,3.132)\\\"></path></g></svg> is defined, and the local asymptotic stability of the disease-free <svg height=\\\"9.01194pt\\\" style=\\\"vertical-align:-0.04981995pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.96212 8.41168 9.01194\\\" width=\\\"8.41168pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-85\\\"></use></g></svg> periodic solution is proved by Floquet theory for <span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 24.295 11.927\\\" width=\\\"24.295pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.086,3.132)\\\"><use xlink:href=\\\"#g50-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.664,0)\\\"></path></g></svg><span></span><span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"27.8771838 -8.6359 6.422 11.927\\\" width=\\\"6.422pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,27.927,0)\\\"></path></g></svg>.</span></span> Finally, based on the impulsive differential inequality theory, the global asymptotic stability of the disease-free <svg height=\\\"9.01194pt\\\" style=\\\"vertical-align:-0.04981995pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.96212 8.41168 9.01194\\\" width=\\\"8.41168pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-85\\\"></use></g></svg> periodic solution is given for <span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 24.295 11.927\\\" width=\\\"24.295pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.086,3.132)\\\"><use xlink:href=\\\"#g50-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.664,0)\\\"><use xlink:href=\\\"#g117-91\\\"></use></g></svg><span></span><span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"27.8771838 -8.6359 6.422 11.927\\\" width=\\\"6.422pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,27.927,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g></svg>,</span></span> and the disease dies out eventually. The results show that in order to stop the disease epidemic, it is necessary to choose the appropriate vaccination rate and elimination rate and the appropriate impulsive period.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6617911\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/6617911","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stability Analysis of SIRS Model considering Pulse Vaccination and Elimination Disturbance
It is well known that many natural phenomena and human activities do exhibit impulsive effects in the fields of epidemiology. At the same time, compared with a single control strategy, it is obvious that the multiple control strategies are more beneficial to restrain the spread of infectious diseases. In this paper, we consider pulse vaccination and pulse elimination strategies at the same time and establish an SIRS epidemic model with standard incidence. Firstly, according to the stroboscopic mapping method of the discrete dynamical system, the disease-free periodic solution of the model under the condition of pulse vaccination and pulse elimination is obtained. Secondly, the basic reproductive number is defined, and the local asymptotic stability of the disease-free periodic solution is proved by Floquet theory for . Finally, based on the impulsive differential inequality theory, the global asymptotic stability of the disease-free periodic solution is given for , and the disease dies out eventually. The results show that in order to stop the disease epidemic, it is necessary to choose the appropriate vaccination rate and elimination rate and the appropriate impulsive period.
期刊介绍:
Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.