薛定谔方程归一化解的全局分支方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Louis Jeanjean , Jianjun Zhang , Xuexiu Zhong
{"title":"薛定谔方程归一化解的全局分支方法","authors":"Louis Jeanjean ,&nbsp;Jianjun Zhang ,&nbsp;Xuexiu Zhong","doi":"10.1016/j.matpur.2024.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>We study the existence, non-existence and multiplicity of prescribed mass positive solutions to a Schrödinger equation of the form<span><span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mi>N</mi><mo>≥</mo><mn>1</mn><mo>.</mo></math></span></span></span> Our approach permits to handle in a unified way nonlinearities <span><math><mi>g</mi><mo>(</mo><mi>s</mi><mo>)</mo></math></span> which are either mass subcritical, mass critical or mass supercritical. Among its main ingredients is the study of the asymptotic behaviors of the positive solutions as <span><math><mi>λ</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> or <span><math><mi>λ</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span> and the existence of an unbounded continuum of solutions in <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000102/pdfft?md5=f6c2872a0f6dac1f94b8685209ca5ffc&pid=1-s2.0-S0021782424000102-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A global branch approach to normalized solutions for the Schrödinger equation\",\"authors\":\"Louis Jeanjean ,&nbsp;Jianjun Zhang ,&nbsp;Xuexiu Zhong\",\"doi\":\"10.1016/j.matpur.2024.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the existence, non-existence and multiplicity of prescribed mass positive solutions to a Schrödinger equation of the form<span><span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mi>N</mi><mo>≥</mo><mn>1</mn><mo>.</mo></math></span></span></span> Our approach permits to handle in a unified way nonlinearities <span><math><mi>g</mi><mo>(</mo><mi>s</mi><mo>)</mo></math></span> which are either mass subcritical, mass critical or mass supercritical. Among its main ingredients is the study of the asymptotic behaviors of the positive solutions as <span><math><mi>λ</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> or <span><math><mi>λ</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span> and the existence of an unbounded continuum of solutions in <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000102/pdfft?md5=f6c2872a0f6dac1f94b8685209ca5ffc&pid=1-s2.0-S0021782424000102-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了形式为-Δu+λu=g(u),u∈H1(RN),N≥1的薛定谔方程的规定质量正解的存在性、不存在性和多重性。 我们的方法允许以统一的方式处理质量次临界、质量临界或质量超临界的非线性g(s)。其主要内容包括研究正解在λ→0+ 或 λ→+∞ 时的渐近行为,以及在 (0,+∞)×H1(RN) 中存在无界连续解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A global branch approach to normalized solutions for the Schrödinger equation

We study the existence, non-existence and multiplicity of prescribed mass positive solutions to a Schrödinger equation of the formΔu+λu=g(u),uH1(RN),N1. Our approach permits to handle in a unified way nonlinearities g(s) which are either mass subcritical, mass critical or mass supercritical. Among its main ingredients is the study of the asymptotic behaviors of the positive solutions as λ0+ or λ+ and the existence of an unbounded continuum of solutions in (0,+)×H1(RN).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信