Maria Stehle, Torben Lemmermann, Fabian Grasser, Claudia Adolfs, Marco Drache, Uwe Gohs, Armin Lohrengel, Ulrich Kunz, Sabine Beuermann
{"title":"通过预辐照诱导丙烯酸和 AMPS 在 PVDF 上的接枝共聚制备钒液流电池用聚合物电解质膜的创新反应器设计","authors":"Maria Stehle, Torben Lemmermann, Fabian Grasser, Claudia Adolfs, Marco Drache, Uwe Gohs, Armin Lohrengel, Ulrich Kunz, Sabine Beuermann","doi":"10.1515/polyeng-2023-0216","DOIUrl":null,"url":null,"abstract":"An innovative reactor concept is reported that allows for efficient mass transfer from the liquid phase to the base material and compensates for the growth of the material throughout the synthesis of polymer electrolyte membranes (PEM). The novel reactor allows for the synthesis of PEMs with high reproducibility of their dimensions and properties. PEMs are synthesized via graft copolymerization of the monomers acrylic acid and 2-acrylamido-2-methylpropane sulfonic acid on poly(vinylidene fluoride) films serving as base material, which was activated by electron beam treatment. Both monomers are already containing protogenic groups; thus, follow-up functionalization reactions are avoided. The PEMs were characterized with respect to their electrochemical properties (area specific resistance, recharge current, and ion exchange capacity) relevant for application in vanadium flow batteries and compared to commercially available PEMs.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative reactor design for the preparation of polymer electrolyte membranes for vanadium flow batteries from preirradiation induced graft copolymerization of acrylic acid and AMPS on PVDF\",\"authors\":\"Maria Stehle, Torben Lemmermann, Fabian Grasser, Claudia Adolfs, Marco Drache, Uwe Gohs, Armin Lohrengel, Ulrich Kunz, Sabine Beuermann\",\"doi\":\"10.1515/polyeng-2023-0216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An innovative reactor concept is reported that allows for efficient mass transfer from the liquid phase to the base material and compensates for the growth of the material throughout the synthesis of polymer electrolyte membranes (PEM). The novel reactor allows for the synthesis of PEMs with high reproducibility of their dimensions and properties. PEMs are synthesized via graft copolymerization of the monomers acrylic acid and 2-acrylamido-2-methylpropane sulfonic acid on poly(vinylidene fluoride) films serving as base material, which was activated by electron beam treatment. Both monomers are already containing protogenic groups; thus, follow-up functionalization reactions are avoided. The PEMs were characterized with respect to their electrochemical properties (area specific resistance, recharge current, and ion exchange capacity) relevant for application in vanadium flow batteries and compared to commercially available PEMs.\",\"PeriodicalId\":16881,\"journal\":{\"name\":\"Journal of Polymer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/polyeng-2023-0216\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2023-0216","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Innovative reactor design for the preparation of polymer electrolyte membranes for vanadium flow batteries from preirradiation induced graft copolymerization of acrylic acid and AMPS on PVDF
An innovative reactor concept is reported that allows for efficient mass transfer from the liquid phase to the base material and compensates for the growth of the material throughout the synthesis of polymer electrolyte membranes (PEM). The novel reactor allows for the synthesis of PEMs with high reproducibility of their dimensions and properties. PEMs are synthesized via graft copolymerization of the monomers acrylic acid and 2-acrylamido-2-methylpropane sulfonic acid on poly(vinylidene fluoride) films serving as base material, which was activated by electron beam treatment. Both monomers are already containing protogenic groups; thus, follow-up functionalization reactions are avoided. The PEMs were characterized with respect to their electrochemical properties (area specific resistance, recharge current, and ion exchange capacity) relevant for application in vanadium flow batteries and compared to commercially available PEMs.
期刊介绍:
Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.