针对代谢、昼夜节律和睡眠障碍的体外下丘脑病理生理学建模

Helena Leal, Catarina Carvalhas-Almeida, Ana Rita Álvaro, Cláudia Cavadas
{"title":"针对代谢、昼夜节律和睡眠障碍的体外下丘脑病理生理学建模","authors":"Helena Leal, Catarina Carvalhas-Almeida, Ana Rita Álvaro, Cláudia Cavadas","doi":"10.1016/j.tem.2024.01.001","DOIUrl":null,"url":null,"abstract":"<p>The hypothalamus, a small and intricate brain structure, orchestrates numerous neuroendocrine functions through specialized neurons and nuclei. Disruption of this complex circuitry can result in various diseases, including metabolic, circadian, and sleep disorders. Advances in <em>in vitro</em> models and their integration with new technologies have significantly benefited research on hypothalamic function and pathophysiology. We explore existing <em>in vitro</em> hypothalamic models and address their challenges and limitations as well as translational findings. We also highlight how collaborative efforts among multidisciplinary teams are essential to develop relevant and translational experimental models capable of replicating intricate neural circuits and neuroendocrine pathways, thereby advancing our understanding of therapeutic targets and drug discovery in hypothalamus-related disorders.</p>","PeriodicalId":23301,"journal":{"name":"Trends in Endocrinology & Metabolism","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling hypothalamic pathophysiology in vitro for metabolic, circadian, and sleep disorders\",\"authors\":\"Helena Leal, Catarina Carvalhas-Almeida, Ana Rita Álvaro, Cláudia Cavadas\",\"doi\":\"10.1016/j.tem.2024.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The hypothalamus, a small and intricate brain structure, orchestrates numerous neuroendocrine functions through specialized neurons and nuclei. Disruption of this complex circuitry can result in various diseases, including metabolic, circadian, and sleep disorders. Advances in <em>in vitro</em> models and their integration with new technologies have significantly benefited research on hypothalamic function and pathophysiology. We explore existing <em>in vitro</em> hypothalamic models and address their challenges and limitations as well as translational findings. We also highlight how collaborative efforts among multidisciplinary teams are essential to develop relevant and translational experimental models capable of replicating intricate neural circuits and neuroendocrine pathways, thereby advancing our understanding of therapeutic targets and drug discovery in hypothalamus-related disorders.</p>\",\"PeriodicalId\":23301,\"journal\":{\"name\":\"Trends in Endocrinology & Metabolism\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Endocrinology & Metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tem.2024.01.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Endocrinology & Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.tem.2024.01.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

下丘脑是一个小而复杂的大脑结构,它通过专门的神经元和神经核来协调多种神经内分泌功能。这一复杂回路的破坏可导致各种疾病,包括代谢、昼夜节律和睡眠障碍。体外模型的进步及其与新技术的整合极大地促进了对下丘脑功能和病理生理学的研究。我们探讨了现有的体外下丘脑模型,并论述了它们所面临的挑战和局限性以及转化研究成果。我们还强调了多学科团队之间的合作对于开发能够复制复杂神经回路和神经内分泌通路的相关转化实验模型的重要性,从而促进我们对下丘脑相关疾病的治疗靶点和药物发现的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling hypothalamic pathophysiology in vitro for metabolic, circadian, and sleep disorders

The hypothalamus, a small and intricate brain structure, orchestrates numerous neuroendocrine functions through specialized neurons and nuclei. Disruption of this complex circuitry can result in various diseases, including metabolic, circadian, and sleep disorders. Advances in in vitro models and their integration with new technologies have significantly benefited research on hypothalamic function and pathophysiology. We explore existing in vitro hypothalamic models and address their challenges and limitations as well as translational findings. We also highlight how collaborative efforts among multidisciplinary teams are essential to develop relevant and translational experimental models capable of replicating intricate neural circuits and neuroendocrine pathways, thereby advancing our understanding of therapeutic targets and drug discovery in hypothalamus-related disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信