{"title":"水下脚踏机器人的 USLIP 动力学与脚踏螃蟹的运动学相结合","authors":"Mrudul Chellapurath , Anna Astolfi , Yuki Yokoyama , Shingo Maeda , Marcello Calisti","doi":"10.1016/j.mechatronics.2024.103142","DOIUrl":null,"url":null,"abstract":"<div><p>This article investigates bioinspired solutions for achieving stable dynamic gaits in legged robots through leg coordination and foot trajectories. In this study, we recorded the kinematics of underwater running of the crab, <em>Pachygrapsus marmoratus</em>, and implemented the parameterized foot trajectories and inter-leg coordination on an underwater legged robot, SILVER 2.0. The robot’s design parameters like legs’ stiffness, leg length, and body mass are based on the Underwater Spring Loaded Inverted Pendulum (USLIP), a model that describes underwater running in animals. With this implementation, we observed the spontaneous emergence of USLIP dynamics in 20% of the strides in the robot. This approach allowed SILVER 2.0 to leverage the advantages of stable dynamic gaits while optimizing the foot trajectory and inter-leg coordination, resulting in improved locomotion performances. The robot achieved a forward velocity of 0.16 m/s, twice the value obtained in previous gaits. Our study presents a promising approach for improving the locomotion performance of legged robots, enabling their effective use in various field applications, and further confirms a broad embedding of controllers generating template dynamics.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"99 ","pages":"Article 103142"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0957415824000072/pdfft?md5=9c3615fcc7b2164a1ab236dce7eb2c8f&pid=1-s2.0-S0957415824000072-main.pdf","citationCount":"0","resultStr":"{\"title\":\"USLIP dynamics emerges in underwater legged robot with foot kinematics of punting crabs\",\"authors\":\"Mrudul Chellapurath , Anna Astolfi , Yuki Yokoyama , Shingo Maeda , Marcello Calisti\",\"doi\":\"10.1016/j.mechatronics.2024.103142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article investigates bioinspired solutions for achieving stable dynamic gaits in legged robots through leg coordination and foot trajectories. In this study, we recorded the kinematics of underwater running of the crab, <em>Pachygrapsus marmoratus</em>, and implemented the parameterized foot trajectories and inter-leg coordination on an underwater legged robot, SILVER 2.0. The robot’s design parameters like legs’ stiffness, leg length, and body mass are based on the Underwater Spring Loaded Inverted Pendulum (USLIP), a model that describes underwater running in animals. With this implementation, we observed the spontaneous emergence of USLIP dynamics in 20% of the strides in the robot. This approach allowed SILVER 2.0 to leverage the advantages of stable dynamic gaits while optimizing the foot trajectory and inter-leg coordination, resulting in improved locomotion performances. The robot achieved a forward velocity of 0.16 m/s, twice the value obtained in previous gaits. Our study presents a promising approach for improving the locomotion performance of legged robots, enabling their effective use in various field applications, and further confirms a broad embedding of controllers generating template dynamics.</p></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"99 \",\"pages\":\"Article 103142\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0957415824000072/pdfft?md5=9c3615fcc7b2164a1ab236dce7eb2c8f&pid=1-s2.0-S0957415824000072-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957415824000072\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824000072","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
USLIP dynamics emerges in underwater legged robot with foot kinematics of punting crabs
This article investigates bioinspired solutions for achieving stable dynamic gaits in legged robots through leg coordination and foot trajectories. In this study, we recorded the kinematics of underwater running of the crab, Pachygrapsus marmoratus, and implemented the parameterized foot trajectories and inter-leg coordination on an underwater legged robot, SILVER 2.0. The robot’s design parameters like legs’ stiffness, leg length, and body mass are based on the Underwater Spring Loaded Inverted Pendulum (USLIP), a model that describes underwater running in animals. With this implementation, we observed the spontaneous emergence of USLIP dynamics in 20% of the strides in the robot. This approach allowed SILVER 2.0 to leverage the advantages of stable dynamic gaits while optimizing the foot trajectory and inter-leg coordination, resulting in improved locomotion performances. The robot achieved a forward velocity of 0.16 m/s, twice the value obtained in previous gaits. Our study presents a promising approach for improving the locomotion performance of legged robots, enabling their effective use in various field applications, and further confirms a broad embedding of controllers generating template dynamics.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.