Yogesh M. Chitare , Vikas V. Magdum , Shirin P. Kulkarni , Shweta V. Talekar , Shraddha A. Pawar , Prashant D. Sawant , Dhanaji B. Malavekar , Umakant M. Patil , Chandrakant D. Lokhande , Jayavant L. Gunjakar
{"title":"用于多目标降解有机分子的优先定向 m 调谐 WO3 薄膜光催化剂","authors":"Yogesh M. Chitare , Vikas V. Magdum , Shirin P. Kulkarni , Shweta V. Talekar , Shraddha A. Pawar , Prashant D. Sawant , Dhanaji B. Malavekar , Umakant M. Patil , Chandrakant D. Lokhande , Jayavant L. Gunjakar","doi":"10.1016/j.apsadv.2024.100573","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, morphology-tuned tungsten oxide (m-tuned WO<sub>3</sub>) thin films are deposited on a glass substrate by a simple and cost-effective chemical bath deposition (CBD) method. The deposition pH is varied to tune the physicochemical properties of m-tuned WO<sub>3</sub> thin films. The m-tuned WO<sub>3</sub> thin films show an orthorhombic crystal structure with a preferred orientation along the (020) plane. The morphological study demonstrated the conversion of ‘rice hull’ to ‘interlocked nanosheets’ to ‘reticulated nanosheets composed of nanorods’ upon changing pH, highlighting the significant role of pH in m-tuned WO<sub>3</sub> thin film synthesis. The m-tuned WO<sub>3</sub> thin films show good absorption in the visible-light region (390–780 nm) of the solar spectrum. The m-tuned WO<sub>3</sub> thin films are used for the visible light active photocatalytic degradation of organic molecules such as methylene blue (MB), rhodamine B (Rh B), and tetracycline hydrochloride (TC). The optimized m-tuned WO<sub>3</sub> thin film shows maximum photocatalytic performance of 95, 94, and 86 % in 180 min for MB, Rh B, and TC, respectively. The present study demonstrates the usefulness of the CBD method for the deposition of m-tuned WO<sub>3</sub> and improved photocatalytic performance.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000011/pdfft?md5=4e2abee2f1be9d4c16594f090180963f&pid=1-s2.0-S2666523924000011-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Preferentially oriented m-tuned WO3 thin-films photocatalysts for the multitargeted degradation of organic molecules\",\"authors\":\"Yogesh M. Chitare , Vikas V. Magdum , Shirin P. Kulkarni , Shweta V. Talekar , Shraddha A. Pawar , Prashant D. Sawant , Dhanaji B. Malavekar , Umakant M. Patil , Chandrakant D. Lokhande , Jayavant L. Gunjakar\",\"doi\":\"10.1016/j.apsadv.2024.100573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, morphology-tuned tungsten oxide (m-tuned WO<sub>3</sub>) thin films are deposited on a glass substrate by a simple and cost-effective chemical bath deposition (CBD) method. The deposition pH is varied to tune the physicochemical properties of m-tuned WO<sub>3</sub> thin films. The m-tuned WO<sub>3</sub> thin films show an orthorhombic crystal structure with a preferred orientation along the (020) plane. The morphological study demonstrated the conversion of ‘rice hull’ to ‘interlocked nanosheets’ to ‘reticulated nanosheets composed of nanorods’ upon changing pH, highlighting the significant role of pH in m-tuned WO<sub>3</sub> thin film synthesis. The m-tuned WO<sub>3</sub> thin films show good absorption in the visible-light region (390–780 nm) of the solar spectrum. The m-tuned WO<sub>3</sub> thin films are used for the visible light active photocatalytic degradation of organic molecules such as methylene blue (MB), rhodamine B (Rh B), and tetracycline hydrochloride (TC). The optimized m-tuned WO<sub>3</sub> thin film shows maximum photocatalytic performance of 95, 94, and 86 % in 180 min for MB, Rh B, and TC, respectively. The present study demonstrates the usefulness of the CBD method for the deposition of m-tuned WO<sub>3</sub> and improved photocatalytic performance.</p></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666523924000011/pdfft?md5=4e2abee2f1be9d4c16594f090180963f&pid=1-s2.0-S2666523924000011-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523924000011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Preferentially oriented m-tuned WO3 thin-films photocatalysts for the multitargeted degradation of organic molecules
In this work, morphology-tuned tungsten oxide (m-tuned WO3) thin films are deposited on a glass substrate by a simple and cost-effective chemical bath deposition (CBD) method. The deposition pH is varied to tune the physicochemical properties of m-tuned WO3 thin films. The m-tuned WO3 thin films show an orthorhombic crystal structure with a preferred orientation along the (020) plane. The morphological study demonstrated the conversion of ‘rice hull’ to ‘interlocked nanosheets’ to ‘reticulated nanosheets composed of nanorods’ upon changing pH, highlighting the significant role of pH in m-tuned WO3 thin film synthesis. The m-tuned WO3 thin films show good absorption in the visible-light region (390–780 nm) of the solar spectrum. The m-tuned WO3 thin films are used for the visible light active photocatalytic degradation of organic molecules such as methylene blue (MB), rhodamine B (Rh B), and tetracycline hydrochloride (TC). The optimized m-tuned WO3 thin film shows maximum photocatalytic performance of 95, 94, and 86 % in 180 min for MB, Rh B, and TC, respectively. The present study demonstrates the usefulness of the CBD method for the deposition of m-tuned WO3 and improved photocatalytic performance.