适应性学习预期如何合理化巴西更强有力的货币政策反应?

Allan Dizioli, Hou Wang
{"title":"适应性学习预期如何合理化巴西更强有力的货币政策反应?","authors":"Allan Dizioli,&nbsp;Hou Wang","doi":"10.1016/j.latcb.2024.100119","DOIUrl":null,"url":null,"abstract":"<div><p>This paper estimates a standard Dynamic Stochastic General Equilibrium (DSGE) model that includes a wage and price Phillips curves with different expectation formation processes for Brazil and the USA. Other than the standard rational expectation process, we also use a limited rationality process, the adaptative learning model. In this context, we show that the separate inclusion of a labor market in the model helps to anchor inflation even in a situation of adaptive expectations, a positive output gap and inflation above target. The estimation results show that the adaptive learning model does a better job in fitting the data in Brazil. In addition, the estimation shows that expectations are more backward-looking and started to drift away sooner in 2021 in Brazil than in the USA. We then conduct optimal policy exercises that prescribe front-loading monetary policy tightening and easing earlier than the estimated monetary policy rule in the context of positive output gaps and inflation far above the central bank target.</p></div>","PeriodicalId":100867,"journal":{"name":"Latin American Journal of Central Banking","volume":"5 1","pages":"Article 100119"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666143824000012/pdfft?md5=b0249be0420f4c216a6f04193c48b16d&pid=1-s2.0-S2666143824000012-main.pdf","citationCount":"0","resultStr":"{\"title\":\"How do adaptive learning expectations rationalize stronger monetary policy response in Brazil?\",\"authors\":\"Allan Dizioli,&nbsp;Hou Wang\",\"doi\":\"10.1016/j.latcb.2024.100119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper estimates a standard Dynamic Stochastic General Equilibrium (DSGE) model that includes a wage and price Phillips curves with different expectation formation processes for Brazil and the USA. Other than the standard rational expectation process, we also use a limited rationality process, the adaptative learning model. In this context, we show that the separate inclusion of a labor market in the model helps to anchor inflation even in a situation of adaptive expectations, a positive output gap and inflation above target. The estimation results show that the adaptive learning model does a better job in fitting the data in Brazil. In addition, the estimation shows that expectations are more backward-looking and started to drift away sooner in 2021 in Brazil than in the USA. We then conduct optimal policy exercises that prescribe front-loading monetary policy tightening and easing earlier than the estimated monetary policy rule in the context of positive output gaps and inflation far above the central bank target.</p></div>\",\"PeriodicalId\":100867,\"journal\":{\"name\":\"Latin American Journal of Central Banking\",\"volume\":\"5 1\",\"pages\":\"Article 100119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666143824000012/pdfft?md5=b0249be0420f4c216a6f04193c48b16d&pid=1-s2.0-S2666143824000012-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latin American Journal of Central Banking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666143824000012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Central Banking","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666143824000012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文估算了一个标准的动态随机一般均衡(DSGE)模型,该模型包括工资和价格菲利普斯曲线,巴西和美国的预期形成过程各不相同。除标准理性预期过程外,我们还使用了有限理性过程,即适应性学习模型。在这种情况下,我们表明,在模型中单独加入劳动力市场有助于锚定通胀,即使在适应性预期、正产出缺口和通胀高于目标的情况下也是如此。估计结果表明,自适应学习模型能更好地拟合巴西的数据。此外,估计结果表明,巴西的预期更具后瞻性,在 2021 年开始偏离的时间早于美国。然后,我们进行了最优政策演练,在正产出缺口和通胀率远高于央行目标的情况下,比估计的货币政策规则更早地规定了前置的货币政策紧缩和放松。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How do adaptive learning expectations rationalize stronger monetary policy response in Brazil?

This paper estimates a standard Dynamic Stochastic General Equilibrium (DSGE) model that includes a wage and price Phillips curves with different expectation formation processes for Brazil and the USA. Other than the standard rational expectation process, we also use a limited rationality process, the adaptative learning model. In this context, we show that the separate inclusion of a labor market in the model helps to anchor inflation even in a situation of adaptive expectations, a positive output gap and inflation above target. The estimation results show that the adaptive learning model does a better job in fitting the data in Brazil. In addition, the estimation shows that expectations are more backward-looking and started to drift away sooner in 2021 in Brazil than in the USA. We then conduct optimal policy exercises that prescribe front-loading monetary policy tightening and easing earlier than the estimated monetary policy rule in the context of positive output gaps and inflation far above the central bank target.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信