Ruoqi Yang, Yaochao Yan, Zhiheng Wei, Fan Wang, Guangfu Yang
{"title":"Pesti-DGI-Net:基于双重可解释性的多模态深度学习架构,用于农药相似性预测","authors":"Ruoqi Yang, Yaochao Yan, Zhiheng Wei, Fan Wang, Guangfu Yang","doi":"10.1016/j.compag.2024.108660","DOIUrl":null,"url":null,"abstract":"<div><p>“Pesticide-likeness” represents an extension of the pharmaceutical concept of “drug-likeness” to the field of pesticides. The development of algorithmic tools for predicting pesticide-likeness holds great significance for the rational design of pesticide molecules. Among various computational approaches, artificial intelligence techniques, especially deep learning, stand out due to their distinctive advantages. However, the application of deep learning models in the field of pesticide-likeness remains relatively limited. To address this gap, we proposed a multi-modal deep learning architecture, termed Pesti-DGI-Net, which took the standard Simplified Molecular Input Line Entry System (SMILES) of compounds as input and combined molecular representations across multiple dimensions. Through this fusion, Pesti-DGI-Net made accurate predictions of the pesticide-likeness for candidate compounds, as substantiated by extensive evaluations on internal test sets and an external independent test set. Additionally, Pesti-DGI-Net provided two interpretable methods to elucidate the relationship between chemical structure and pesticide-likeness. Comparison with domain experts showed that Pesti-DGI-Net enabled researchers to better understand the prediction results. Finally, we integrated Pesti-DGI-Net with existing web resources to comprehensively assess the potential of compounds as pesticide-like molecules. Our cloud platform is freely available at <span>http://chemyang.ccnu.edu.cn/ccb/server/CoPLE/</span><svg><path></path></svg>.</p></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"217 ","pages":"Article 108660"},"PeriodicalIF":8.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pesti-DGI-Net: A multi-modal deep learning architecture based on dual interpretability for pesticide-likeness prediction\",\"authors\":\"Ruoqi Yang, Yaochao Yan, Zhiheng Wei, Fan Wang, Guangfu Yang\",\"doi\":\"10.1016/j.compag.2024.108660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>“Pesticide-likeness” represents an extension of the pharmaceutical concept of “drug-likeness” to the field of pesticides. The development of algorithmic tools for predicting pesticide-likeness holds great significance for the rational design of pesticide molecules. Among various computational approaches, artificial intelligence techniques, especially deep learning, stand out due to their distinctive advantages. However, the application of deep learning models in the field of pesticide-likeness remains relatively limited. To address this gap, we proposed a multi-modal deep learning architecture, termed Pesti-DGI-Net, which took the standard Simplified Molecular Input Line Entry System (SMILES) of compounds as input and combined molecular representations across multiple dimensions. Through this fusion, Pesti-DGI-Net made accurate predictions of the pesticide-likeness for candidate compounds, as substantiated by extensive evaluations on internal test sets and an external independent test set. Additionally, Pesti-DGI-Net provided two interpretable methods to elucidate the relationship between chemical structure and pesticide-likeness. Comparison with domain experts showed that Pesti-DGI-Net enabled researchers to better understand the prediction results. Finally, we integrated Pesti-DGI-Net with existing web resources to comprehensively assess the potential of compounds as pesticide-like molecules. Our cloud platform is freely available at <span>http://chemyang.ccnu.edu.cn/ccb/server/CoPLE/</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":\"217 \",\"pages\":\"Article 108660\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168169924000516\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924000516","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Pesti-DGI-Net: A multi-modal deep learning architecture based on dual interpretability for pesticide-likeness prediction
“Pesticide-likeness” represents an extension of the pharmaceutical concept of “drug-likeness” to the field of pesticides. The development of algorithmic tools for predicting pesticide-likeness holds great significance for the rational design of pesticide molecules. Among various computational approaches, artificial intelligence techniques, especially deep learning, stand out due to their distinctive advantages. However, the application of deep learning models in the field of pesticide-likeness remains relatively limited. To address this gap, we proposed a multi-modal deep learning architecture, termed Pesti-DGI-Net, which took the standard Simplified Molecular Input Line Entry System (SMILES) of compounds as input and combined molecular representations across multiple dimensions. Through this fusion, Pesti-DGI-Net made accurate predictions of the pesticide-likeness for candidate compounds, as substantiated by extensive evaluations on internal test sets and an external independent test set. Additionally, Pesti-DGI-Net provided two interpretable methods to elucidate the relationship between chemical structure and pesticide-likeness. Comparison with domain experts showed that Pesti-DGI-Net enabled researchers to better understand the prediction results. Finally, we integrated Pesti-DGI-Net with existing web resources to comprehensively assess the potential of compounds as pesticide-like molecules. Our cloud platform is freely available at http://chemyang.ccnu.edu.cn/ccb/server/CoPLE/.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.