MCM-41 催化剂支撑的 Ni 上的等离子催化 CO2 甲烷化:金属分散和工艺优化的影响

Shaowei Chen , Tianqi Liu , Jiangqi Niu , Jianguo Huang , Xinsheng Peng , Huanyu Zhou , Huanhao Chen , Xiaolei Fan
{"title":"MCM-41 催化剂支撑的 Ni 上的等离子催化 CO2 甲烷化:金属分散和工艺优化的影响","authors":"Shaowei Chen ,&nbsp;Tianqi Liu ,&nbsp;Jiangqi Niu ,&nbsp;Jianguo Huang ,&nbsp;Xinsheng Peng ,&nbsp;Huanyu Zhou ,&nbsp;Huanhao Chen ,&nbsp;Xiaolei Fan","doi":"10.1016/j.ccst.2024.100194","DOIUrl":null,"url":null,"abstract":"<div><p>Catalytic carbon dioxide (CO<sub>2</sub>) conversion technologies can be important components in carbon capture, storage and utilization for CO<sub>2</sub> mitigation and possible future economic activity and have gained significant attention globally in past decades. Electrified non-thermal plasma (NTP) catalysis enables CO<sub>2</sub> hydrogenation into value-added chemicals under mild conditions. If the hybrid process is coupled with renewable energy and green hydrogen, it can be the promising solution to address the energy and carbon emission challenges. To enhance the energy efficiency of NTP-catalytic systems, bespoke catalyst design and process optimization are necessary. Here, using Ni catalysts supported on mesoporous MCM-41 and NTP-catalytic CO<sub>2</sub> methanation as the model systems, the effects of Ni metal dispersion, argon (Ar) addition and residence time on the NTP catalysis were also studied. The findings show that (i) increased metal dispersion alone did not lead to significant enhancement in the performance of NTP catalysis (e.g., CH<sub>4</sub> production rate: 31.4 × 10<sup>−5</sup> mol/(s·g<sub>Ni</sub>) for 42.6 % Ni dispersion vs. 26.8 × 10<sup>−5</sup> mol/(s·g<sub>Ni</sub>) for 25.1 % dispersion), (ii) Ar addition to the system led to the decreased methane production rate (e.g., CH<sub>4</sub> selectivity decreased by ∼19 % due to the increase in Ar addition to the system from 5 to 50 mL/min), and (iii) optimization of the residence time could improve the performance of NTP-catalytic CO<sub>2</sub> methanation (i.e., an extension of the residence time to 0.69 s resulted in the higher CO<sub>2</sub> conversion of 72.7 % and CH<sub>4</sub> selectivity of 95.9 % at 9.6 kV than that at 0.49 s and 11 kV).</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277265682400006X/pdfft?md5=28ee0ae56da1d7d363d72e3f96e5352d&pid=1-s2.0-S277265682400006X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Plasma-catalytic CO2 methanation over Ni supported on MCM-41 catalysts: Effect of metal dispersion and process optimization\",\"authors\":\"Shaowei Chen ,&nbsp;Tianqi Liu ,&nbsp;Jiangqi Niu ,&nbsp;Jianguo Huang ,&nbsp;Xinsheng Peng ,&nbsp;Huanyu Zhou ,&nbsp;Huanhao Chen ,&nbsp;Xiaolei Fan\",\"doi\":\"10.1016/j.ccst.2024.100194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Catalytic carbon dioxide (CO<sub>2</sub>) conversion technologies can be important components in carbon capture, storage and utilization for CO<sub>2</sub> mitigation and possible future economic activity and have gained significant attention globally in past decades. Electrified non-thermal plasma (NTP) catalysis enables CO<sub>2</sub> hydrogenation into value-added chemicals under mild conditions. If the hybrid process is coupled with renewable energy and green hydrogen, it can be the promising solution to address the energy and carbon emission challenges. To enhance the energy efficiency of NTP-catalytic systems, bespoke catalyst design and process optimization are necessary. Here, using Ni catalysts supported on mesoporous MCM-41 and NTP-catalytic CO<sub>2</sub> methanation as the model systems, the effects of Ni metal dispersion, argon (Ar) addition and residence time on the NTP catalysis were also studied. The findings show that (i) increased metal dispersion alone did not lead to significant enhancement in the performance of NTP catalysis (e.g., CH<sub>4</sub> production rate: 31.4 × 10<sup>−5</sup> mol/(s·g<sub>Ni</sub>) for 42.6 % Ni dispersion vs. 26.8 × 10<sup>−5</sup> mol/(s·g<sub>Ni</sub>) for 25.1 % dispersion), (ii) Ar addition to the system led to the decreased methane production rate (e.g., CH<sub>4</sub> selectivity decreased by ∼19 % due to the increase in Ar addition to the system from 5 to 50 mL/min), and (iii) optimization of the residence time could improve the performance of NTP-catalytic CO<sub>2</sub> methanation (i.e., an extension of the residence time to 0.69 s resulted in the higher CO<sub>2</sub> conversion of 72.7 % and CH<sub>4</sub> selectivity of 95.9 % at 9.6 kV than that at 0.49 s and 11 kV).</p></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277265682400006X/pdfft?md5=28ee0ae56da1d7d363d72e3f96e5352d&pid=1-s2.0-S277265682400006X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277265682400006X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277265682400006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

催化二氧化碳(CO2)转化技术是碳捕集、封存和利用的重要组成部分,可用于减缓二氧化碳排放和未来可能的经济活动。电气化非热等离子体(NTP)催化技术可在温和的条件下将二氧化碳加氢转化为高附加值化学品。如果将这种混合工艺与可再生能源和绿色氢气相结合,它将成为应对能源和碳排放挑战的有前途的解决方案。为了提高 NTP 催化系统的能效,有必要对催化剂进行定制设计和工艺优化。本文以介孔 MCM-41 支持的 Ni 催化剂和 NTP 催化 CO2 甲烷化为模型系统,研究了 Ni 金属分散、氩气(Ar)添加和停留时间对 NTP 催化的影响。研究结果表明:(i) 单靠增加金属分散度并不能显著提高 NTP 催化的性能(例如,CH4 产率为 31.4 × 10-5 摩尔/分钟):42.6%的镍分散度为 31.4 × 10-5 mol/(s-gNi),而 25.1%的分散度为 26.8 × 10-5 mol/(s-gNi)),(ii) 向系统中添加 Ar 会导致甲烷生产率降低(例如,CH4 选择性降低了 ∼ Å)、(iii) 优化停留时间可提高 NTP 催化 CO2 甲烷化的性能(例如,将停留时间延长至 0.69 秒,与 0.49 秒和 11 千伏电压下相比,在 9.6 千伏电压下 CO2 转化率提高了 72.7%,CH4 选择性提高了 95.9%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plasma-catalytic CO2 methanation over Ni supported on MCM-41 catalysts: Effect of metal dispersion and process optimization

Plasma-catalytic CO2 methanation over Ni supported on MCM-41 catalysts: Effect of metal dispersion and process optimization

Catalytic carbon dioxide (CO2) conversion technologies can be important components in carbon capture, storage and utilization for CO2 mitigation and possible future economic activity and have gained significant attention globally in past decades. Electrified non-thermal plasma (NTP) catalysis enables CO2 hydrogenation into value-added chemicals under mild conditions. If the hybrid process is coupled with renewable energy and green hydrogen, it can be the promising solution to address the energy and carbon emission challenges. To enhance the energy efficiency of NTP-catalytic systems, bespoke catalyst design and process optimization are necessary. Here, using Ni catalysts supported on mesoporous MCM-41 and NTP-catalytic CO2 methanation as the model systems, the effects of Ni metal dispersion, argon (Ar) addition and residence time on the NTP catalysis were also studied. The findings show that (i) increased metal dispersion alone did not lead to significant enhancement in the performance of NTP catalysis (e.g., CH4 production rate: 31.4 × 10−5 mol/(s·gNi) for 42.6 % Ni dispersion vs. 26.8 × 10−5 mol/(s·gNi) for 25.1 % dispersion), (ii) Ar addition to the system led to the decreased methane production rate (e.g., CH4 selectivity decreased by ∼19 % due to the increase in Ar addition to the system from 5 to 50 mL/min), and (iii) optimization of the residence time could improve the performance of NTP-catalytic CO2 methanation (i.e., an extension of the residence time to 0.69 s resulted in the higher CO2 conversion of 72.7 % and CH4 selectivity of 95.9 % at 9.6 kV than that at 0.49 s and 11 kV).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信