Xiaoqing Fan , Libao Zhang , Juke Wang , Yefei Ren , Aiwen Liu
{"title":"2023 年 2 月 6 日图尔基耶双重地震第一次主震造成的断层破坏和供水管道损坏分析","authors":"Xiaoqing Fan , Libao Zhang , Juke Wang , Yefei Ren , Aiwen Liu","doi":"10.1016/j.eqs.2023.11.004","DOIUrl":null,"url":null,"abstract":"<div><p>In 2023, two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye, causing severe casualties and economic losses. The damage to critical urban infrastructure and building structures, including highways, railroads, and water supply pipelines, was particularly severe in areas where these structures intersected the seismogenic fault. Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement, pulse velocity, and ground motions. In this study, we used a unique approach to analyze the acceleration records obtained from the seismic station array (9 strong ground motion stations) located along the East Anatolian Fault (the seismogenic fault of the <em>M</em><sub>W</sub>7.8 mainshock of the 2023 Türkiye earthquake doublet). The acceleration records were filtered and integrated to obtain the velocity and displacement time histories. We used the results of an on-site investigation, jointly conducted by China Earthquake Administration and Türkiye’s AFAD, to analyze the distribution of PGA, PGV, and PGD recorded by the strong motion array of the East Anatolian Fault. We found that the maximum horizontal PGA in this earthquake was 3.0 g, and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m. As the fault rupture propagated southwest, the velocity pulse caused by the directional effect of the rupture increased gradually, with the maximum PGA reaching 162.3 cm/s. We also discussed the seismic safety of critical infrastructure projects traversing active faults, using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes. We used a three-dimensional finite element model of the PE (polyethylene) water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms. We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline, based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake. The seismic method of buried pipelines crossing the fault was summarized.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 1","pages":"Pages 78-90"},"PeriodicalIF":1.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451923000599/pdfft?md5=7d4e957703f0e5a7b18ba23065721bfd&pid=1-s2.0-S1674451923000599-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis of faulting destruction and water supply pipeline damage from the first mainshock of the February 6, 2023 Türkiye earthquake doublet\",\"authors\":\"Xiaoqing Fan , Libao Zhang , Juke Wang , Yefei Ren , Aiwen Liu\",\"doi\":\"10.1016/j.eqs.2023.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 2023, two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye, causing severe casualties and economic losses. The damage to critical urban infrastructure and building structures, including highways, railroads, and water supply pipelines, was particularly severe in areas where these structures intersected the seismogenic fault. Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement, pulse velocity, and ground motions. In this study, we used a unique approach to analyze the acceleration records obtained from the seismic station array (9 strong ground motion stations) located along the East Anatolian Fault (the seismogenic fault of the <em>M</em><sub>W</sub>7.8 mainshock of the 2023 Türkiye earthquake doublet). The acceleration records were filtered and integrated to obtain the velocity and displacement time histories. We used the results of an on-site investigation, jointly conducted by China Earthquake Administration and Türkiye’s AFAD, to analyze the distribution of PGA, PGV, and PGD recorded by the strong motion array of the East Anatolian Fault. We found that the maximum horizontal PGA in this earthquake was 3.0 g, and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m. As the fault rupture propagated southwest, the velocity pulse caused by the directional effect of the rupture increased gradually, with the maximum PGA reaching 162.3 cm/s. We also discussed the seismic safety of critical infrastructure projects traversing active faults, using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes. We used a three-dimensional finite element model of the PE (polyethylene) water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms. We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline, based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake. The seismic method of buried pipelines crossing the fault was summarized.</p></div>\",\"PeriodicalId\":46333,\"journal\":{\"name\":\"Earthquake Science\",\"volume\":\"37 1\",\"pages\":\"Pages 78-90\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674451923000599/pdfft?md5=7d4e957703f0e5a7b18ba23065721bfd&pid=1-s2.0-S1674451923000599-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674451923000599\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451923000599","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Analysis of faulting destruction and water supply pipeline damage from the first mainshock of the February 6, 2023 Türkiye earthquake doublet
In 2023, two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye, causing severe casualties and economic losses. The damage to critical urban infrastructure and building structures, including highways, railroads, and water supply pipelines, was particularly severe in areas where these structures intersected the seismogenic fault. Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement, pulse velocity, and ground motions. In this study, we used a unique approach to analyze the acceleration records obtained from the seismic station array (9 strong ground motion stations) located along the East Anatolian Fault (the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet). The acceleration records were filtered and integrated to obtain the velocity and displacement time histories. We used the results of an on-site investigation, jointly conducted by China Earthquake Administration and Türkiye’s AFAD, to analyze the distribution of PGA, PGV, and PGD recorded by the strong motion array of the East Anatolian Fault. We found that the maximum horizontal PGA in this earthquake was 3.0 g, and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m. As the fault rupture propagated southwest, the velocity pulse caused by the directional effect of the rupture increased gradually, with the maximum PGA reaching 162.3 cm/s. We also discussed the seismic safety of critical infrastructure projects traversing active faults, using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes. We used a three-dimensional finite element model of the PE (polyethylene) water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms. We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline, based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake. The seismic method of buried pipelines crossing the fault was summarized.
期刊介绍:
Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration.
The topics include, but not limited to, the following
● Seismic sources of all kinds.
● Earth structure at all scales.
● Seismotectonics.
● New methods and theoretical seismology.
● Strong ground motion.
● Seismic phenomena of all kinds.
● Seismic hazards, earthquake forecasting and prediction.
● Seismic instrumentation.
● Significant recent or past seismic events.
● Documentation of recent seismic events or important observations.
● Descriptions of field deployments, new methods, and available software tools.
The types of manuscripts include the following. There is no length requirement, except for the Short Notes.
【Articles】 Original contributions that have not been published elsewhere.
【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages.
【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications.
【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals.
【Toolboxes】 Descriptions of novel numerical methods and associated computer codes.
【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models).
【Opinions】Views on important topics and future directions in earthquake science.
【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.