{"title":"利用临床肺功能实验室的数据讲授呼吸生理学:说明气道与肺实质之间的相互依存关系。","authors":"Sean Till, David A Kaminsky","doi":"10.1152/advan.00149.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Here we demonstrate how data from the clinical pulmonary function lab can help students learn about the principle of airway-parenchymal interdependence. We examined the relationship between airway conductance (Gaw) and lung volume (thoracic gas volume, TGV) in 48 patients: 17 healthy; 20 with emphysema, expected to have reduced airway-parenchymal interdependence; and 11 with pulmonary fibrosis, expected to have increased airway-parenchymal interdependence. Our findings support these expectations, with the slope of Gaw vs. TGV being steeper among those with pulmonary fibrosis and flatter among those with emphysema, compared to the slope of the healthy group. This type of analytic approach, using real-world patient data readily available from any pulmonary function laboratory, can be used to explore other fundamental principles of respiratory physiology.<b>NEW & NOTEWORTHY</b> This report demonstrates how common data obtained from the clinical pulmonary function testing laboratory can be used to illustrate important principles of respiratory physiology. Here we show how the relationship between airway conductance and lung volume across different disease states reflects intrinsic differences in airway-parenchymal interdependence.</p>","PeriodicalId":50852,"journal":{"name":"Advances in Physiology Education","volume":" ","pages":"279-283"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing data from the clinical pulmonary function laboratory to teach about respiratory physiology: illustrating airway-parenchymal interdependence.\",\"authors\":\"Sean Till, David A Kaminsky\",\"doi\":\"10.1152/advan.00149.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Here we demonstrate how data from the clinical pulmonary function lab can help students learn about the principle of airway-parenchymal interdependence. We examined the relationship between airway conductance (Gaw) and lung volume (thoracic gas volume, TGV) in 48 patients: 17 healthy; 20 with emphysema, expected to have reduced airway-parenchymal interdependence; and 11 with pulmonary fibrosis, expected to have increased airway-parenchymal interdependence. Our findings support these expectations, with the slope of Gaw vs. TGV being steeper among those with pulmonary fibrosis and flatter among those with emphysema, compared to the slope of the healthy group. This type of analytic approach, using real-world patient data readily available from any pulmonary function laboratory, can be used to explore other fundamental principles of respiratory physiology.<b>NEW & NOTEWORTHY</b> This report demonstrates how common data obtained from the clinical pulmonary function testing laboratory can be used to illustrate important principles of respiratory physiology. Here we show how the relationship between airway conductance and lung volume across different disease states reflects intrinsic differences in airway-parenchymal interdependence.</p>\",\"PeriodicalId\":50852,\"journal\":{\"name\":\"Advances in Physiology Education\",\"volume\":\" \",\"pages\":\"279-283\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physiology Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1152/advan.00149.2023\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physiology Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1152/advan.00149.2023","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Utilizing data from the clinical pulmonary function laboratory to teach about respiratory physiology: illustrating airway-parenchymal interdependence.
Here we demonstrate how data from the clinical pulmonary function lab can help students learn about the principle of airway-parenchymal interdependence. We examined the relationship between airway conductance (Gaw) and lung volume (thoracic gas volume, TGV) in 48 patients: 17 healthy; 20 with emphysema, expected to have reduced airway-parenchymal interdependence; and 11 with pulmonary fibrosis, expected to have increased airway-parenchymal interdependence. Our findings support these expectations, with the slope of Gaw vs. TGV being steeper among those with pulmonary fibrosis and flatter among those with emphysema, compared to the slope of the healthy group. This type of analytic approach, using real-world patient data readily available from any pulmonary function laboratory, can be used to explore other fundamental principles of respiratory physiology.NEW & NOTEWORTHY This report demonstrates how common data obtained from the clinical pulmonary function testing laboratory can be used to illustrate important principles of respiratory physiology. Here we show how the relationship between airway conductance and lung volume across different disease states reflects intrinsic differences in airway-parenchymal interdependence.
期刊介绍:
Advances in Physiology Education promotes and disseminates educational scholarship in order to enhance teaching and learning of physiology, neuroscience and pathophysiology. The journal publishes peer-reviewed descriptions of innovations that improve teaching in the classroom and laboratory, essays on education, and review articles based on our current understanding of physiological mechanisms. Submissions that evaluate new technologies for teaching and research, and educational pedagogy, are especially welcome. The audience for the journal includes educators at all levels: K–12, undergraduate, graduate, and professional programs.