头部和眼球运动揭示了声音定位过程中急性双耳缺陷的补偿策略

IF 2.6 2区 医学 Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY
Robel Z Alemu, Blake C Papsin, Robert V Harrison, Al Blakeman, Karen A Gordon
{"title":"头部和眼球运动揭示了声音定位过程中急性双耳缺陷的补偿策略","authors":"Robel Z Alemu, Blake C Papsin, Robert V Harrison, Al Blakeman, Karen A Gordon","doi":"10.1177/23312165231217910","DOIUrl":null,"url":null,"abstract":"<p><p>The present study aimed to define use of head and eye movements during sound localization in children and adults to: (1) assess effects of stationary versus moving sound and (2) define effects of binaural cues degraded through acute monaural ear plugging. Thirty-three youth (<i>M</i><sub>Age </sub>= 12.9 years) and seventeen adults (<i>M</i><sub>Age </sub>= 24.6 years) with typical hearing were recruited and asked to localize white noise anywhere within a horizontal arc from -60° (left) to +60° (right) azimuth in two conditions (typical binaural and right ear plugged). In each trial, sound was presented at an initial stationary position (L1) and then while moving at ∼4°/s until reaching a second position (L2). Sound moved in five conditions (±40°, ±20°, or 0°). Participants adjusted a laser pointer to indicate L1 and L2 positions. Unrestricted head and eye movements were collected with gyroscopic sensors on the head and eye-tracking glasses, respectively. Results confirmed that accurate sound localization of both stationary and moving sound is disrupted by acute monaural ear plugging. Eye movements preceded head movements for sound localization in normal binaural listening and head movements were larger than eye movements during monaural plugging. Head movements favored the unplugged left ear when stationary sounds were presented in the right hemifield and during sound motion in both hemifields regardless of the movement direction. Disrupted binaural cues have greater effects on localization of moving than stationary sound. Head movements reveal preferential use of the better-hearing ear and relatively stable eye positions likely reflect normal vestibular-ocular reflexes.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10832417/pdf/","citationCount":"0","resultStr":"{\"title\":\"Head and Eye Movements Reveal Compensatory Strategies for Acute Binaural Deficits During Sound Localization.\",\"authors\":\"Robel Z Alemu, Blake C Papsin, Robert V Harrison, Al Blakeman, Karen A Gordon\",\"doi\":\"10.1177/23312165231217910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study aimed to define use of head and eye movements during sound localization in children and adults to: (1) assess effects of stationary versus moving sound and (2) define effects of binaural cues degraded through acute monaural ear plugging. Thirty-three youth (<i>M</i><sub>Age </sub>= 12.9 years) and seventeen adults (<i>M</i><sub>Age </sub>= 24.6 years) with typical hearing were recruited and asked to localize white noise anywhere within a horizontal arc from -60° (left) to +60° (right) azimuth in two conditions (typical binaural and right ear plugged). In each trial, sound was presented at an initial stationary position (L1) and then while moving at ∼4°/s until reaching a second position (L2). Sound moved in five conditions (±40°, ±20°, or 0°). Participants adjusted a laser pointer to indicate L1 and L2 positions. Unrestricted head and eye movements were collected with gyroscopic sensors on the head and eye-tracking glasses, respectively. Results confirmed that accurate sound localization of both stationary and moving sound is disrupted by acute monaural ear plugging. Eye movements preceded head movements for sound localization in normal binaural listening and head movements were larger than eye movements during monaural plugging. Head movements favored the unplugged left ear when stationary sounds were presented in the right hemifield and during sound motion in both hemifields regardless of the movement direction. Disrupted binaural cues have greater effects on localization of moving than stationary sound. Head movements reveal preferential use of the better-hearing ear and relatively stable eye positions likely reflect normal vestibular-ocular reflexes.</p>\",\"PeriodicalId\":48678,\"journal\":{\"name\":\"Trends in Hearing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10832417/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Hearing\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/23312165231217910\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Hearing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/23312165231217910","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在确定儿童和成人在声音定位过程中头部和眼球运动的使用情况,以便:(1)评估静止声音和运动声音的影响;(2)确定通过急性单耳堵塞降低的双耳线索的影响。研究人员招募了具有典型听力的 33 名青少年(平均年龄 = 12.9 岁)和 17 名成人(平均年龄 = 24.6 岁),要求他们在两种条件下(典型双耳和右耳堵塞)定位方位角从 -60°(左)到 +60°(右)水平弧线内任何地方的白噪声。在每次试验中,声音在初始静止位置(L1)出现,然后以 ∼4°/s 的速度移动,直到到达第二个位置(L2)。声音的移动有五种情况(±40°、±20° 或 0°)。参与者通过调整激光指示器来指示 L1 和 L2 位置。头部的陀螺仪传感器和眼球跟踪眼镜分别收集头部和眼球的无限制运动。结果证实,急性单声道耳塞会干扰对静止和移动声音的准确声音定位。在正常双耳聆听时,眼球运动先于头部运动进行声音定位,而在单耳堵塞时,头部运动大于眼球运动。当静止的声音出现在右半球时,头部运动偏向于未插耳的左耳;当声音运动出现在两个半球时,无论运动方向如何,头部运动都偏向于未插耳的左耳。中断的双耳线索对运动声音的定位影响大于静止声音。头部运动显示了听力较好的耳朵的优先使用,而相对稳定的眼球位置可能反映了正常的前庭-眼反射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Head and Eye Movements Reveal Compensatory Strategies for Acute Binaural Deficits During Sound Localization.

The present study aimed to define use of head and eye movements during sound localization in children and adults to: (1) assess effects of stationary versus moving sound and (2) define effects of binaural cues degraded through acute monaural ear plugging. Thirty-three youth (MAge = 12.9 years) and seventeen adults (MAge = 24.6 years) with typical hearing were recruited and asked to localize white noise anywhere within a horizontal arc from -60° (left) to +60° (right) azimuth in two conditions (typical binaural and right ear plugged). In each trial, sound was presented at an initial stationary position (L1) and then while moving at ∼4°/s until reaching a second position (L2). Sound moved in five conditions (±40°, ±20°, or 0°). Participants adjusted a laser pointer to indicate L1 and L2 positions. Unrestricted head and eye movements were collected with gyroscopic sensors on the head and eye-tracking glasses, respectively. Results confirmed that accurate sound localization of both stationary and moving sound is disrupted by acute monaural ear plugging. Eye movements preceded head movements for sound localization in normal binaural listening and head movements were larger than eye movements during monaural plugging. Head movements favored the unplugged left ear when stationary sounds were presented in the right hemifield and during sound motion in both hemifields regardless of the movement direction. Disrupted binaural cues have greater effects on localization of moving than stationary sound. Head movements reveal preferential use of the better-hearing ear and relatively stable eye positions likely reflect normal vestibular-ocular reflexes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Hearing
Trends in Hearing AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGYOTORH-OTORHINOLARYNGOLOGY
CiteScore
4.50
自引率
11.10%
发文量
44
审稿时长
12 weeks
期刊介绍: Trends in Hearing is an open access journal completely dedicated to publishing original research and reviews focusing on human hearing, hearing loss, hearing aids, auditory implants, and aural rehabilitation. Under its former name, Trends in Amplification, the journal established itself as a forum for concise explorations of all areas of translational hearing research by leaders in the field. Trends in Hearing has now expanded its focus to include original research articles, with the goal of becoming the premier venue for research related to human hearing and hearing loss.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信