{"title":"限制 STING 激活和干扰素表达需要寨卡病毒 NS5 的一个保守的甲基转移酶活性位点残基。","authors":"Yuting Li, Zhaoxin Li, Haimei Zou, Peiwen Zhou, Yuhang Huo, Yaohua Fan, Xiaohong Liu, Jianguo Wu, Geng Li, Xiao Wang","doi":"10.1099/jgv.0.001954","DOIUrl":null,"url":null,"abstract":"<p><p>Zika virus (ZIKV) is a re-emerging RNA virus and causes major public health events due to its link to severe neurological complications in foetuses and neonates. The cGAS-STING signalling pathway regulates innate immunity and plays an important role in the invasion of DNA and RNA viruses. This study reveals a distinct mechanism by which ZIKV restricts the cGAS-STING signalling to repress IFN-β expression. ZIKV attenuates IFN-β expression induced by DNA viruses (herpes simplex virus type 1, HSV-1) or two double-stranded DNAs (dsDNA90 and HSV120) in mouse embryonic fibroblasts (MEFs). Notably, ZIKV NS5, the viral RNA-dependent RNA polymerase, was responsible for the repression of IFN-β. NS5 interacts with STING in the cytoplasm, suppresses IRF3 phosphorylation and nucleus localization and promotes the cleavage of STING K48-linked polyubiquitination. Furthermore, the NS5 methyltransferase (MTase) domain interacts with STING to restrict STING-induced IFN-β expression. Interestingly, point mutation analyses of conserved methyltransferase active site residue D146 indicate that it is critical for repressing IFN-β expression induced by STING stimulation in cGAS-STING signalling.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A conserved methyltransferase active site residue of Zika virus NS5 is required for the restriction of STING activation and interferon expression.\",\"authors\":\"Yuting Li, Zhaoxin Li, Haimei Zou, Peiwen Zhou, Yuhang Huo, Yaohua Fan, Xiaohong Liu, Jianguo Wu, Geng Li, Xiao Wang\",\"doi\":\"10.1099/jgv.0.001954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zika virus (ZIKV) is a re-emerging RNA virus and causes major public health events due to its link to severe neurological complications in foetuses and neonates. The cGAS-STING signalling pathway regulates innate immunity and plays an important role in the invasion of DNA and RNA viruses. This study reveals a distinct mechanism by which ZIKV restricts the cGAS-STING signalling to repress IFN-β expression. ZIKV attenuates IFN-β expression induced by DNA viruses (herpes simplex virus type 1, HSV-1) or two double-stranded DNAs (dsDNA90 and HSV120) in mouse embryonic fibroblasts (MEFs). Notably, ZIKV NS5, the viral RNA-dependent RNA polymerase, was responsible for the repression of IFN-β. NS5 interacts with STING in the cytoplasm, suppresses IRF3 phosphorylation and nucleus localization and promotes the cleavage of STING K48-linked polyubiquitination. Furthermore, the NS5 methyltransferase (MTase) domain interacts with STING to restrict STING-induced IFN-β expression. Interestingly, point mutation analyses of conserved methyltransferase active site residue D146 indicate that it is critical for repressing IFN-β expression induced by STING stimulation in cGAS-STING signalling.</p>\",\"PeriodicalId\":15880,\"journal\":{\"name\":\"Journal of General Virology\",\"volume\":\"105 2\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1099/jgv.0.001954\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1099/jgv.0.001954","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A conserved methyltransferase active site residue of Zika virus NS5 is required for the restriction of STING activation and interferon expression.
Zika virus (ZIKV) is a re-emerging RNA virus and causes major public health events due to its link to severe neurological complications in foetuses and neonates. The cGAS-STING signalling pathway regulates innate immunity and plays an important role in the invasion of DNA and RNA viruses. This study reveals a distinct mechanism by which ZIKV restricts the cGAS-STING signalling to repress IFN-β expression. ZIKV attenuates IFN-β expression induced by DNA viruses (herpes simplex virus type 1, HSV-1) or two double-stranded DNAs (dsDNA90 and HSV120) in mouse embryonic fibroblasts (MEFs). Notably, ZIKV NS5, the viral RNA-dependent RNA polymerase, was responsible for the repression of IFN-β. NS5 interacts with STING in the cytoplasm, suppresses IRF3 phosphorylation and nucleus localization and promotes the cleavage of STING K48-linked polyubiquitination. Furthermore, the NS5 methyltransferase (MTase) domain interacts with STING to restrict STING-induced IFN-β expression. Interestingly, point mutation analyses of conserved methyltransferase active site residue D146 indicate that it is critical for repressing IFN-β expression induced by STING stimulation in cGAS-STING signalling.
期刊介绍:
JOURNAL OF GENERAL VIROLOGY (JGV), a journal of the Society for General Microbiology (SGM), publishes high-calibre research papers with high production standards, giving the journal a worldwide reputation for excellence and attracting an eminent audience.