保护基因组学分析揭示了大黄蜂(Bombus opulentus)近期的种群数量下降及其可能的原因。

IF 2.9 1区 农林科学 Q1 ENTOMOLOGY
Insect Science Pub Date : 2024-10-01 Epub Date: 2024-01-31 DOI:10.1111/1744-7917.13324
Huiling Sang, Yancan Li, Shuxin Tan, Pu Gao, Bei Wang, Shengnan Guo, Shudong Luo, Cheng Sun
{"title":"保护基因组学分析揭示了大黄蜂(Bombus opulentus)近期的种群数量下降及其可能的原因。","authors":"Huiling Sang, Yancan Li, Shuxin Tan, Pu Gao, Bei Wang, Shengnan Guo, Shudong Luo, Cheng Sun","doi":"10.1111/1744-7917.13324","DOIUrl":null,"url":null,"abstract":"<p><p>Bumblebees are a genus of pollinators (Bombus) that play important roles in natural ecosystem and agricultural production. Several bumblebee species have been recorded as under population decline, and the proportion of species experiencing population decline within subgenus Thoracobombus is higher than average. Bombus opulentus is 1 species in Thoracobombus, but little is known about its recent population dynamics. Here, we employed conservation genomics methods to investigate the population dynamics of B. opulentus during the recent past and identify the likely environmental factors that may cause population decline. Firstly, we placed the scaffold-level of B. opulentus reference genome sequence onto chromosome-level using Hi-C technique. Then, based on this reference genome and whole-genome resequencing data for 51 B. opulentus samples, we reconstructed the population structure and effective population size (N<sub>e</sub>) trajectories of B. opulentus and identified genes that were under positive selection. Our results revealed that the collected B. opulentus samples could be divided into 2 populations, and 1 of them experienced a recent population decline; the declining population also exhibited lower genetic diversity and higher inbreeding levels. Genes related to high-temperature tolerance, immune response, and detoxication showed signals of positive selection in the declining population, suggesting that climate warming and pathogen/pesticide exposures may contribute to the decline of this B. opulentus population. Taken together, our study provided insights into the demography of B. opulentus populations and highlighted that populations of the same bumblebee species could have contrasting N<sub>e</sub> trajectories and population decline could be caused by a combination of various stressors.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1631-1644"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conservation genomics analysis reveals recent population decline and possible causes in bumblebee Bombus opulentus.\",\"authors\":\"Huiling Sang, Yancan Li, Shuxin Tan, Pu Gao, Bei Wang, Shengnan Guo, Shudong Luo, Cheng Sun\",\"doi\":\"10.1111/1744-7917.13324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bumblebees are a genus of pollinators (Bombus) that play important roles in natural ecosystem and agricultural production. Several bumblebee species have been recorded as under population decline, and the proportion of species experiencing population decline within subgenus Thoracobombus is higher than average. Bombus opulentus is 1 species in Thoracobombus, but little is known about its recent population dynamics. Here, we employed conservation genomics methods to investigate the population dynamics of B. opulentus during the recent past and identify the likely environmental factors that may cause population decline. Firstly, we placed the scaffold-level of B. opulentus reference genome sequence onto chromosome-level using Hi-C technique. Then, based on this reference genome and whole-genome resequencing data for 51 B. opulentus samples, we reconstructed the population structure and effective population size (N<sub>e</sub>) trajectories of B. opulentus and identified genes that were under positive selection. Our results revealed that the collected B. opulentus samples could be divided into 2 populations, and 1 of them experienced a recent population decline; the declining population also exhibited lower genetic diversity and higher inbreeding levels. Genes related to high-temperature tolerance, immune response, and detoxication showed signals of positive selection in the declining population, suggesting that climate warming and pathogen/pesticide exposures may contribute to the decline of this B. opulentus population. Taken together, our study provided insights into the demography of B. opulentus populations and highlighted that populations of the same bumblebee species could have contrasting N<sub>e</sub> trajectories and population decline could be caused by a combination of various stressors.</p>\",\"PeriodicalId\":13618,\"journal\":{\"name\":\"Insect Science\",\"volume\":\" \",\"pages\":\"1631-1644\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1744-7917.13324\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13324","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

熊蜂是授粉动物(Bombus)的一个属,在自然生态系统和农业生产中发挥着重要作用。根据记录,有多个熊蜂物种正处于种群衰退期,而在 Thoracobombus 亚属中,种群衰退的物种比例高于平均水平。大黄蜂(Bombus opulentus)是大黄蜂亚属中的一个物种,但人们对其近期的种群动态知之甚少。在此,我们采用保护基因组学方法研究了华盖蝠近期的种群动态,并确定了可能导致种群数量下降的环境因素。首先,我们利用Hi-C技术将B.opulentus参考基因组序列的骨架层置于染色体层。然后,基于该参考基因组和51个玉鲍样本的全基因组重测序数据,我们重建了玉鲍的种群结构和有效种群数量(Ne)轨迹,并确定了正选择基因。我们的研究结果表明,所采集到的乳燕蝽样本可分为两个种群,其中一个种群最近经历了种群衰退;衰退种群也表现出较低的遗传多样性和较高的近交水平。在衰退种群中,与耐高温、免疫反应和解毒有关的基因显示出正选择信号,这表明气候变暖和病原体/杀虫剂暴露可能是导致该玉鲍种群衰退的原因。总之,我们的研究提供了对大黄蜂种群数量分布的见解,并强调了同一大黄蜂物种的种群可能具有截然不同的Ne轨迹,而种群数量的下降可能是由各种压力因素共同造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Conservation genomics analysis reveals recent population decline and possible causes in bumblebee Bombus opulentus.

Conservation genomics analysis reveals recent population decline and possible causes in bumblebee Bombus opulentus.

Bumblebees are a genus of pollinators (Bombus) that play important roles in natural ecosystem and agricultural production. Several bumblebee species have been recorded as under population decline, and the proportion of species experiencing population decline within subgenus Thoracobombus is higher than average. Bombus opulentus is 1 species in Thoracobombus, but little is known about its recent population dynamics. Here, we employed conservation genomics methods to investigate the population dynamics of B. opulentus during the recent past and identify the likely environmental factors that may cause population decline. Firstly, we placed the scaffold-level of B. opulentus reference genome sequence onto chromosome-level using Hi-C technique. Then, based on this reference genome and whole-genome resequencing data for 51 B. opulentus samples, we reconstructed the population structure and effective population size (Ne) trajectories of B. opulentus and identified genes that were under positive selection. Our results revealed that the collected B. opulentus samples could be divided into 2 populations, and 1 of them experienced a recent population decline; the declining population also exhibited lower genetic diversity and higher inbreeding levels. Genes related to high-temperature tolerance, immune response, and detoxication showed signals of positive selection in the declining population, suggesting that climate warming and pathogen/pesticide exposures may contribute to the decline of this B. opulentus population. Taken together, our study provided insights into the demography of B. opulentus populations and highlighted that populations of the same bumblebee species could have contrasting Ne trajectories and population decline could be caused by a combination of various stressors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insect Science
Insect Science 生物-昆虫学
CiteScore
7.80
自引率
5.00%
发文量
1379
审稿时长
6.0 months
期刊介绍: Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信