Yunxiao Liu, Lanping Guo, Qi Li, Wencui Yang and Hongjing Dong
{"title":"利用机器学习和网络药理学预测马仁润肠丸中有关便秘的质量指标","authors":"Yunxiao Liu, Lanping Guo, Qi Li, Wencui Yang and Hongjing Dong","doi":"10.1039/D3MO00221G","DOIUrl":null,"url":null,"abstract":"<p >Maren Runchang pill (MRRCP) is a Chinese patent medicine used to treat constipation in clinics. It has multi-component and multi-target characteristics, and there is an urgent need to screen markers to ensure its quality. The aim of this study was to screen quality markers of MRRCP based on a “differential compounds-bioactivity” strategy using machine learning and network pharmacology to ensure the effectiveness and stability of MRRCP. In this study, UPLC-Q-TOF-MS/MS was used to identify chemical compounds in MRRCP and machine learning algorithms were applied to screen differential compounds. The quality markers were further screened by network pharmacology. Meanwhile, molecular docking was used to verify the screening results of machine learning and network pharmacology. A total of 28 constituents in MRRCP were identified, and four differential compounds were screened by machine learning algorithms. Subsequently, a total of two quality markers (rutin and rubiadin) in MRRCP. Additionally, the molecular docking results showed that quality markers could spontaneously bind to core targets. This study provides a reference for improving the quality evaluation method of MRRCP to ensure its quality. More importantly, it provided a new approach to screen quality markers in Chinese patent medicines.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" 4","pages":" 283-288"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of quality markers in Maren Runchang pill for constipation using machine learning and network pharmacology†\",\"authors\":\"Yunxiao Liu, Lanping Guo, Qi Li, Wencui Yang and Hongjing Dong\",\"doi\":\"10.1039/D3MO00221G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Maren Runchang pill (MRRCP) is a Chinese patent medicine used to treat constipation in clinics. It has multi-component and multi-target characteristics, and there is an urgent need to screen markers to ensure its quality. The aim of this study was to screen quality markers of MRRCP based on a “differential compounds-bioactivity” strategy using machine learning and network pharmacology to ensure the effectiveness and stability of MRRCP. In this study, UPLC-Q-TOF-MS/MS was used to identify chemical compounds in MRRCP and machine learning algorithms were applied to screen differential compounds. The quality markers were further screened by network pharmacology. Meanwhile, molecular docking was used to verify the screening results of machine learning and network pharmacology. A total of 28 constituents in MRRCP were identified, and four differential compounds were screened by machine learning algorithms. Subsequently, a total of two quality markers (rutin and rubiadin) in MRRCP. Additionally, the molecular docking results showed that quality markers could spontaneously bind to core targets. This study provides a reference for improving the quality evaluation method of MRRCP to ensure its quality. More importantly, it provided a new approach to screen quality markers in Chinese patent medicines.</p>\",\"PeriodicalId\":19065,\"journal\":{\"name\":\"Molecular omics\",\"volume\":\" 4\",\"pages\":\" 283-288\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular omics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/mo/d3mo00221g\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mo/d3mo00221g","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Prediction of quality markers in Maren Runchang pill for constipation using machine learning and network pharmacology†
Maren Runchang pill (MRRCP) is a Chinese patent medicine used to treat constipation in clinics. It has multi-component and multi-target characteristics, and there is an urgent need to screen markers to ensure its quality. The aim of this study was to screen quality markers of MRRCP based on a “differential compounds-bioactivity” strategy using machine learning and network pharmacology to ensure the effectiveness and stability of MRRCP. In this study, UPLC-Q-TOF-MS/MS was used to identify chemical compounds in MRRCP and machine learning algorithms were applied to screen differential compounds. The quality markers were further screened by network pharmacology. Meanwhile, molecular docking was used to verify the screening results of machine learning and network pharmacology. A total of 28 constituents in MRRCP were identified, and four differential compounds were screened by machine learning algorithms. Subsequently, a total of two quality markers (rutin and rubiadin) in MRRCP. Additionally, the molecular docking results showed that quality markers could spontaneously bind to core targets. This study provides a reference for improving the quality evaluation method of MRRCP to ensure its quality. More importantly, it provided a new approach to screen quality markers in Chinese patent medicines.
Molecular omicsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍:
Molecular Omics publishes high-quality research from across the -omics sciences.
Topics include, but are not limited to:
-omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance
-omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets
-omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques
-studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field.
Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits.
Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.