Joshua P. Newton, Paul Nevill, Philip W. Bateman, Matthew A. Campbell, Morten E. Allentoft
{"title":"蜘蛛网捕捉陆生脊椎动物的环境 DNA","authors":"Joshua P. Newton, Paul Nevill, Philip W. Bateman, Matthew A. Campbell, Morten E. Allentoft","doi":"10.1016/j.isci.2024.108904","DOIUrl":null,"url":null,"abstract":"<p>Environmental DNA holds significant promise as a non-invasive tool for tracking terrestrial biodiversity. However, in non-homogenous terrestrial environments, the continual exploration of new substrates is crucial. Here we test the hypothesis that spider webs can act as passive biofilters, capturing eDNA from vertebrates present in the local environment. Using a metabarcoding approach, we detected vertebrate eDNA from all analyzed spider webs (N = 49). Spider webs obtained from an Australian woodland locality yielded vertebrate eDNA from 32 different species, including native mammals and birds. In contrast, webs from Perth Zoo, less than 50 km away, yielded eDNA from 61 different vertebrates and produced a highly distinct species composition, largely reflecting exotic species hosted in the zoo. We show that higher animal biomass and proximity to animal enclosures increased eDNA detection probability in the zoo. Our results indicate a tremendous potential for using spider webs as a cost-effective means to monitor terrestrial vertebrates.</p>","PeriodicalId":342,"journal":{"name":"iScience","volume":"140 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spider webs capture environmental DNA from terrestrial vertebrates\",\"authors\":\"Joshua P. Newton, Paul Nevill, Philip W. Bateman, Matthew A. Campbell, Morten E. Allentoft\",\"doi\":\"10.1016/j.isci.2024.108904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Environmental DNA holds significant promise as a non-invasive tool for tracking terrestrial biodiversity. However, in non-homogenous terrestrial environments, the continual exploration of new substrates is crucial. Here we test the hypothesis that spider webs can act as passive biofilters, capturing eDNA from vertebrates present in the local environment. Using a metabarcoding approach, we detected vertebrate eDNA from all analyzed spider webs (N = 49). Spider webs obtained from an Australian woodland locality yielded vertebrate eDNA from 32 different species, including native mammals and birds. In contrast, webs from Perth Zoo, less than 50 km away, yielded eDNA from 61 different vertebrates and produced a highly distinct species composition, largely reflecting exotic species hosted in the zoo. We show that higher animal biomass and proximity to animal enclosures increased eDNA detection probability in the zoo. Our results indicate a tremendous potential for using spider webs as a cost-effective means to monitor terrestrial vertebrates.</p>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"140 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isci.2024.108904\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.isci.2024.108904","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Spider webs capture environmental DNA from terrestrial vertebrates
Environmental DNA holds significant promise as a non-invasive tool for tracking terrestrial biodiversity. However, in non-homogenous terrestrial environments, the continual exploration of new substrates is crucial. Here we test the hypothesis that spider webs can act as passive biofilters, capturing eDNA from vertebrates present in the local environment. Using a metabarcoding approach, we detected vertebrate eDNA from all analyzed spider webs (N = 49). Spider webs obtained from an Australian woodland locality yielded vertebrate eDNA from 32 different species, including native mammals and birds. In contrast, webs from Perth Zoo, less than 50 km away, yielded eDNA from 61 different vertebrates and produced a highly distinct species composition, largely reflecting exotic species hosted in the zoo. We show that higher animal biomass and proximity to animal enclosures increased eDNA detection probability in the zoo. Our results indicate a tremendous potential for using spider webs as a cost-effective means to monitor terrestrial vertebrates.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.