正交多项式的伯格曼核的极值问题

IF 2.3 2区 数学 Q1 MATHEMATICS
S. Charpentier, N. Levenberg, F. Wielonsky
{"title":"正交多项式的伯格曼核的极值问题","authors":"S. Charpentier, N. Levenberg, F. Wielonsky","doi":"10.1007/s00365-023-09677-7","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\Gamma \\subset \\mathbb {C}\\)</span> be a curve of class <span>\\(C(1,\\alpha )\\)</span>. For <span>\\(z_{0}\\)</span> in the unbounded component of <span>\\(\\mathbb {C}\\setminus \\Gamma \\)</span>, and for <span>\\(n=1,2,...\\)</span>, let <span>\\(\\nu _n\\)</span> be a probability measure with <span>\\(\\mathop {\\textrm{supp}}\\nolimits (\\nu _{n})\\subset \\Gamma \\)</span> which minimizes the Bergman function <span>\\(B_{n}(\\nu ,z):=\\sum _{k=0}^{n}|q_{k}^{\\nu }(z)|^{2}\\)</span> at <span>\\(z_{0}\\)</span> among all probability measures <span>\\(\\nu \\)</span> on <span>\\(\\Gamma \\)</span> (here, <span>\\(\\{q_{0}^{\\nu },\\ldots ,q_{n}^{\\nu }\\}\\)</span> are an orthonormal basis in <span>\\(L^2(\\nu )\\)</span> for the holomorphic polynomials of degree at most <i>n</i>). We show that <span>\\(\\{\\nu _{n}\\}_n\\)</span> tends weak-* to <span>\\({{\\widehat{\\delta }}}_{z_{0}}\\)</span>, the balayage of the point mass at <span>\\(z_0\\)</span> onto <span>\\(\\Gamma \\)</span>, by relating this to an optimization problem for probability measures on the unit circle. Our proof makes use of estimates for Faber polynomials associated to <span>\\(\\Gamma \\)</span>.\n</p>","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":"150 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Extremal Problem for the Bergman Kernel of Orthogonal Polynomials\",\"authors\":\"S. Charpentier, N. Levenberg, F. Wielonsky\",\"doi\":\"10.1007/s00365-023-09677-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\Gamma \\\\subset \\\\mathbb {C}\\\\)</span> be a curve of class <span>\\\\(C(1,\\\\alpha )\\\\)</span>. For <span>\\\\(z_{0}\\\\)</span> in the unbounded component of <span>\\\\(\\\\mathbb {C}\\\\setminus \\\\Gamma \\\\)</span>, and for <span>\\\\(n=1,2,...\\\\)</span>, let <span>\\\\(\\\\nu _n\\\\)</span> be a probability measure with <span>\\\\(\\\\mathop {\\\\textrm{supp}}\\\\nolimits (\\\\nu _{n})\\\\subset \\\\Gamma \\\\)</span> which minimizes the Bergman function <span>\\\\(B_{n}(\\\\nu ,z):=\\\\sum _{k=0}^{n}|q_{k}^{\\\\nu }(z)|^{2}\\\\)</span> at <span>\\\\(z_{0}\\\\)</span> among all probability measures <span>\\\\(\\\\nu \\\\)</span> on <span>\\\\(\\\\Gamma \\\\)</span> (here, <span>\\\\(\\\\{q_{0}^{\\\\nu },\\\\ldots ,q_{n}^{\\\\nu }\\\\}\\\\)</span> are an orthonormal basis in <span>\\\\(L^2(\\\\nu )\\\\)</span> for the holomorphic polynomials of degree at most <i>n</i>). We show that <span>\\\\(\\\\{\\\\nu _{n}\\\\}_n\\\\)</span> tends weak-* to <span>\\\\({{\\\\widehat{\\\\delta }}}_{z_{0}}\\\\)</span>, the balayage of the point mass at <span>\\\\(z_0\\\\)</span> onto <span>\\\\(\\\\Gamma \\\\)</span>, by relating this to an optimization problem for probability measures on the unit circle. Our proof makes use of estimates for Faber polynomials associated to <span>\\\\(\\\\Gamma \\\\)</span>.\\n</p>\",\"PeriodicalId\":50621,\"journal\":{\"name\":\"Constructive Approximation\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constructive Approximation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00365-023-09677-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Approximation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-023-09677-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让(\Gamma \subset \mathbb {C}\)是一条类(C(1,\alpha )\)的曲线。对于 \(z_{0}\) in the unbounded component of \(\mathbb {C}\setminus \Gamma \),并且对于 \(n=1,2,......\),让 \(\nu _n\) 是一个概率度量,它具有 \(\mathop {\textrm{supp}}\nolimits (\nu _{n})\subset \Gamma \),它使伯格曼函数 \(B_{n}(\nu ,z):=sum _{k=0}^{n}|q_{k}^{\nu }(z)|^{2}\) at \(z_{0}\) among all probability measures \(\nu \) on \(\Gamma \) (here, \(\{q_{0}^{\nu }、\)是(L^2(\nu )\) 中最多有 n 度的全多项式的正交基)。我们证明了 \(\{\nu _{n}\}_n\) 弱-*趋向于 \({{\widehat\{delta}}}_{z_{0}\}),即在\(z_0\) 处的点质量到 \(\Gamma \)上的 balayage,并将其与单位圆上概率度量的优化问题联系起来。我们的证明利用了与\(\Gamma \)相关的法布尔多项式的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Extremal Problem for the Bergman Kernel of Orthogonal Polynomials

Let \(\Gamma \subset \mathbb {C}\) be a curve of class \(C(1,\alpha )\). For \(z_{0}\) in the unbounded component of \(\mathbb {C}\setminus \Gamma \), and for \(n=1,2,...\), let \(\nu _n\) be a probability measure with \(\mathop {\textrm{supp}}\nolimits (\nu _{n})\subset \Gamma \) which minimizes the Bergman function \(B_{n}(\nu ,z):=\sum _{k=0}^{n}|q_{k}^{\nu }(z)|^{2}\) at \(z_{0}\) among all probability measures \(\nu \) on \(\Gamma \) (here, \(\{q_{0}^{\nu },\ldots ,q_{n}^{\nu }\}\) are an orthonormal basis in \(L^2(\nu )\) for the holomorphic polynomials of degree at most n). We show that \(\{\nu _{n}\}_n\) tends weak-* to \({{\widehat{\delta }}}_{z_{0}}\), the balayage of the point mass at \(z_0\) onto \(\Gamma \), by relating this to an optimization problem for probability measures on the unit circle. Our proof makes use of estimates for Faber polynomials associated to \(\Gamma \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
3.70%
发文量
35
审稿时长
1 months
期刊介绍: Constructive Approximation is an international mathematics journal dedicated to Approximations and Expansions and related research in computation, function theory, functional analysis, interpolation spaces and interpolation of operators, numerical analysis, space of functions, special functions, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信