A. Ballester-Bolinches, J. Cossey, S. Y. Madanha , M. C. Pedraza-Aguilera
{"title":"关于有限群的完全半可变积","authors":"A. Ballester-Bolinches, J. Cossey, S. Y. Madanha , M. C. Pedraza-Aguilera","doi":"10.1007/s10474-024-01392-4","DOIUrl":null,"url":null,"abstract":"<div><p>We say a group <i>G</i> = <i>AB</i> is the totally semipermutable product of subgroups <i>A</i> and <i>B</i> if every Sylow subgroup <i>P</i> of <i>A</i> is totally permutable with every Sylow subgroup <i>Q</i> of <i>B</i> whenever <span>\\( \\gcd(|P|,|Q|)=1 \\)</span>. Products of pairwise totally semipermutable subgroups are studied in this article. Let <span>\\( \\mathfrak{U} \\)</span> denote the class of supersoluble groups and <span>\\( \\mathfrak{D} \\)</span> denote the formation of all groups which have an ordered Sylow tower of supersoluble type. We obtain the <span>\\( \\mathfrak{F} \\)</span>-residual of the product from the <span>\\( \\mathfrak{F} \\)</span>-residuals of the pairwise totally semipermutable subgroups when <span>\\( \\mathfrak{F} \\)</span> is a subgroup-closed saturated formation such that <span>\\( \\mathfrak{U}\\subseteq \\mathfrak{F}\\subseteq \\mathfrak{D} \\)</span>.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"172 1","pages":"161 - 169"},"PeriodicalIF":0.6000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10474-024-01392-4.pdf","citationCount":"0","resultStr":"{\"title\":\"On totally semipermutable products of finite groups\",\"authors\":\"A. Ballester-Bolinches, J. Cossey, S. Y. Madanha , M. C. Pedraza-Aguilera\",\"doi\":\"10.1007/s10474-024-01392-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We say a group <i>G</i> = <i>AB</i> is the totally semipermutable product of subgroups <i>A</i> and <i>B</i> if every Sylow subgroup <i>P</i> of <i>A</i> is totally permutable with every Sylow subgroup <i>Q</i> of <i>B</i> whenever <span>\\\\( \\\\gcd(|P|,|Q|)=1 \\\\)</span>. Products of pairwise totally semipermutable subgroups are studied in this article. Let <span>\\\\( \\\\mathfrak{U} \\\\)</span> denote the class of supersoluble groups and <span>\\\\( \\\\mathfrak{D} \\\\)</span> denote the formation of all groups which have an ordered Sylow tower of supersoluble type. We obtain the <span>\\\\( \\\\mathfrak{F} \\\\)</span>-residual of the product from the <span>\\\\( \\\\mathfrak{F} \\\\)</span>-residuals of the pairwise totally semipermutable subgroups when <span>\\\\( \\\\mathfrak{F} \\\\)</span> is a subgroup-closed saturated formation such that <span>\\\\( \\\\mathfrak{U}\\\\subseteq \\\\mathfrak{F}\\\\subseteq \\\\mathfrak{D} \\\\)</span>.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"172 1\",\"pages\":\"161 - 169\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10474-024-01392-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01392-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01392-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果 A 的每个 Sylow 子群 P 与 B 的每个 Sylow 子群 Q 都是完全可变的,并且 \( \gcd(|P|,|Q|)=1 \)时,我们就说一个群 G = AB 是子群 A 和 B 的完全半可变乘积。本文研究的是成对完全半可变子群的乘积。让 \( \mathfrak{U} \) 表示超可溶群的类, \( \mathfrak{D} \) 表示所有具有超可溶类型的有序 Sylow 塔的群的形成。当 \( \mathfrak{F} \)是一个子群-封闭的饱和形成时,我们从成对的完全半可变子群的 \( \mathfrak{F} \)-残差得到乘积的 \( \mathfrak{F} \)-残差。封闭的饱和形成,使得( (mathfrak{U}\subseteq \mathfrak{F}\subseteq \mathfrak{D} \)。
On totally semipermutable products of finite groups
We say a group G = AB is the totally semipermutable product of subgroups A and B if every Sylow subgroup P of A is totally permutable with every Sylow subgroup Q of B whenever \( \gcd(|P|,|Q|)=1 \). Products of pairwise totally semipermutable subgroups are studied in this article. Let \( \mathfrak{U} \) denote the class of supersoluble groups and \( \mathfrak{D} \) denote the formation of all groups which have an ordered Sylow tower of supersoluble type. We obtain the \( \mathfrak{F} \)-residual of the product from the \( \mathfrak{F} \)-residuals of the pairwise totally semipermutable subgroups when \( \mathfrak{F} \) is a subgroup-closed saturated formation such that \( \mathfrak{U}\subseteq \mathfrak{F}\subseteq \mathfrak{D} \).
期刊介绍:
Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.