高温含水层热能储存(HT-ATES)的地表移动和储层变形风险

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS
Kai Stricker, Robert Egert, Eva Schill, Thomas Kohl
{"title":"高温含水层热能储存(HT-ATES)的地表移动和储层变形风险","authors":"Kai Stricker,&nbsp;Robert Egert,&nbsp;Eva Schill,&nbsp;Thomas Kohl","doi":"10.1186/s40517-024-00283-9","DOIUrl":null,"url":null,"abstract":"<div><p>High-temperature aquifer thermal energy storage (HT-ATES) systems are designed for seasonal storage of large amounts of thermal energy to meet the demand of industrial processes or district heating systems at high temperatures (&gt; 100 °C). The resulting high injection temperatures or pressures induce thermo- and poroelastic stress changes around the injection well. This study estimates the impact of stress changes in the reservoir on ground surface deformation and evaluates the corresponding risk. Using a simplified coupled thermo-hydraulic-mechanical (THM) model of the planned DeepStor demonstrator in the depleted Leopoldshafen oil field (Upper Rhine Graben, Germany), we show that reservoir heating is associated with stress changes of up to 6 MPa, which can cause vertical displacements at reservoir depth in the order of 10<sup>–3</sup> m in the immediate vicinity of the hot injection well. Both the stress changes and the resulting displacements in the reservoir are dominated by thermoelasticity, which is responsible for up to 90% of the latter. Uplift at the surface, on the contrary, is primarily controlled by poroelasticity with by two orders of magnitude attenuated displacements of &lt;&lt; 10<sup>–3</sup> m. Our calculations further show that the reservoir depth, elastic modulus, and injection/production rates are the dominant controlling parameters for the uplift, showing variations of up to two order of magnitudes between shallower reservoirs with low elastic moduli and deeper and more competent reservoirs. In addition, our findings demonstrate that the cyclic operation of HT-ATES systems reduces the potential for uplift compared to the continuous injection and production of conventional geothermal doublets, hydrocarbon production, or CO<sub>2</sub> storage. Consequently, at realistic production and injection rates and targeting reservoirs at depths of at least several hundred meters, the risk of ground surface movement associated with HT-ATES operations in depleted oil fields in, e.g., the Upper Rhine Graben is negligible.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00283-9","citationCount":"0","resultStr":"{\"title\":\"Risk of surface movements and reservoir deformation for high-temperature aquifer thermal energy storage (HT-ATES)\",\"authors\":\"Kai Stricker,&nbsp;Robert Egert,&nbsp;Eva Schill,&nbsp;Thomas Kohl\",\"doi\":\"10.1186/s40517-024-00283-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-temperature aquifer thermal energy storage (HT-ATES) systems are designed for seasonal storage of large amounts of thermal energy to meet the demand of industrial processes or district heating systems at high temperatures (&gt; 100 °C). The resulting high injection temperatures or pressures induce thermo- and poroelastic stress changes around the injection well. This study estimates the impact of stress changes in the reservoir on ground surface deformation and evaluates the corresponding risk. Using a simplified coupled thermo-hydraulic-mechanical (THM) model of the planned DeepStor demonstrator in the depleted Leopoldshafen oil field (Upper Rhine Graben, Germany), we show that reservoir heating is associated with stress changes of up to 6 MPa, which can cause vertical displacements at reservoir depth in the order of 10<sup>–3</sup> m in the immediate vicinity of the hot injection well. Both the stress changes and the resulting displacements in the reservoir are dominated by thermoelasticity, which is responsible for up to 90% of the latter. Uplift at the surface, on the contrary, is primarily controlled by poroelasticity with by two orders of magnitude attenuated displacements of &lt;&lt; 10<sup>–3</sup> m. Our calculations further show that the reservoir depth, elastic modulus, and injection/production rates are the dominant controlling parameters for the uplift, showing variations of up to two order of magnitudes between shallower reservoirs with low elastic moduli and deeper and more competent reservoirs. In addition, our findings demonstrate that the cyclic operation of HT-ATES systems reduces the potential for uplift compared to the continuous injection and production of conventional geothermal doublets, hydrocarbon production, or CO<sub>2</sub> storage. Consequently, at realistic production and injection rates and targeting reservoirs at depths of at least several hundred meters, the risk of ground surface movement associated with HT-ATES operations in depleted oil fields in, e.g., the Upper Rhine Graben is negligible.</p></div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00283-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-024-00283-9\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-024-00283-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

高温含水层热能储存(HT-ATES)系统设计用于季节性储存大量热能,以满足高温(> 100 °C)下工业流程或区域供热系统的需求。由此产生的高注入温度或压力会引起注入井周围的热弹性和孔弹性应力变化。本研究估算了储层应力变化对地表变形的影响,并评估了相应的风险。我们使用一个简化的热-水-机械(THM)耦合模型,对已枯竭的 Leopoldshafen 油田(德国莱茵河上游地堑)计划中的 DeepStor 示范项目进行了分析,结果表明,储层加热会引起高达 6 兆帕的应力变化,这会导致热注井附近储层深度出现 10-3 米的垂直位移。储层中的应力变化和由此产生的位移都是由热弹性主导的,热弹性对后者的影响高达 90%。我们的计算进一步表明,储层深度、弹性模量和注采/生产率是上浮的主要控制参数,在弹性模量较低的浅层储层和较深且能力较强的储层之间的变化可达两个数量级。此外,我们的研究结果表明,与持续注入和生产常规地热双极、碳氢化合物生产或二氧化碳封存相比,HT-ATES 系统的循环运行降低了隆升的可能性。因此,在莱茵河上游海湾等枯竭油田,以实际的生产和注入率以及至少几百米深的储层为目标,与 HT-ATES 作业相关的地表移动风险可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Risk of surface movements and reservoir deformation for high-temperature aquifer thermal energy storage (HT-ATES)

High-temperature aquifer thermal energy storage (HT-ATES) systems are designed for seasonal storage of large amounts of thermal energy to meet the demand of industrial processes or district heating systems at high temperatures (> 100 °C). The resulting high injection temperatures or pressures induce thermo- and poroelastic stress changes around the injection well. This study estimates the impact of stress changes in the reservoir on ground surface deformation and evaluates the corresponding risk. Using a simplified coupled thermo-hydraulic-mechanical (THM) model of the planned DeepStor demonstrator in the depleted Leopoldshafen oil field (Upper Rhine Graben, Germany), we show that reservoir heating is associated with stress changes of up to 6 MPa, which can cause vertical displacements at reservoir depth in the order of 10–3 m in the immediate vicinity of the hot injection well. Both the stress changes and the resulting displacements in the reservoir are dominated by thermoelasticity, which is responsible for up to 90% of the latter. Uplift at the surface, on the contrary, is primarily controlled by poroelasticity with by two orders of magnitude attenuated displacements of << 10–3 m. Our calculations further show that the reservoir depth, elastic modulus, and injection/production rates are the dominant controlling parameters for the uplift, showing variations of up to two order of magnitudes between shallower reservoirs with low elastic moduli and deeper and more competent reservoirs. In addition, our findings demonstrate that the cyclic operation of HT-ATES systems reduces the potential for uplift compared to the continuous injection and production of conventional geothermal doublets, hydrocarbon production, or CO2 storage. Consequently, at realistic production and injection rates and targeting reservoirs at depths of at least several hundred meters, the risk of ground surface movement associated with HT-ATES operations in depleted oil fields in, e.g., the Upper Rhine Graben is negligible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信