Qi Gao, Ping-Ping He, Xiaowen Wang, Xiaoxue Du and Weiwei Guo
{"title":"刺激响应型 Ti3C2Tx MXene 基水凝胶:制备与应用","authors":"Qi Gao, Ping-Ping He, Xiaowen Wang, Xiaoxue Du and Weiwei Guo","doi":"10.1039/D2QM01195F","DOIUrl":null,"url":null,"abstract":"<p >As a new type of two-dimensional (2D) material, Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> MXenes have attracted tremendous attention due to their unique properties, such as hydrophilicity, excellent conductivity, efficient photothermal conversion, excellent biocompatibility, and so on. Recently, MXene-based stimuli-responsive hydrogels have emerged as a novel class of smart soft materials by combining MXenes with three-dimensional (3D) hydrogel networks with excellent biocompatibility, tissue-like mechanical features and stimuli-responsiveness. MXene-based hydrogels that can respond to stimuli such as strain/pressure, light, and other physicochemical stimuli have been successfully developed and have shown great promise in various applications, such as sensing, actuation, solar steam generation and biomedical applications. This review summarizes the preparation of MXene-based hydrogels and different types of stimuli-responsive MXene-based hydrogels developed so far, as well as their applications in sensors, biomedicine, actuators, solar steam generation, and so on. Finally, the main challenges and future prospects of these novel smart soft materials are discussed.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 9","pages":" 2056-2077"},"PeriodicalIF":6.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stimuli-responsive Ti3C2Tx MXene-based hydrogels: preparation and applications\",\"authors\":\"Qi Gao, Ping-Ping He, Xiaowen Wang, Xiaoxue Du and Weiwei Guo\",\"doi\":\"10.1039/D2QM01195F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As a new type of two-dimensional (2D) material, Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> MXenes have attracted tremendous attention due to their unique properties, such as hydrophilicity, excellent conductivity, efficient photothermal conversion, excellent biocompatibility, and so on. Recently, MXene-based stimuli-responsive hydrogels have emerged as a novel class of smart soft materials by combining MXenes with three-dimensional (3D) hydrogel networks with excellent biocompatibility, tissue-like mechanical features and stimuli-responsiveness. MXene-based hydrogels that can respond to stimuli such as strain/pressure, light, and other physicochemical stimuli have been successfully developed and have shown great promise in various applications, such as sensing, actuation, solar steam generation and biomedical applications. This review summarizes the preparation of MXene-based hydrogels and different types of stimuli-responsive MXene-based hydrogels developed so far, as well as their applications in sensors, biomedicine, actuators, solar steam generation, and so on. Finally, the main challenges and future prospects of these novel smart soft materials are discussed.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 9\",\"pages\":\" 2056-2077\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d2qm01195f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d2qm01195f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stimuli-responsive Ti3C2Tx MXene-based hydrogels: preparation and applications
As a new type of two-dimensional (2D) material, Ti3C2Tx MXenes have attracted tremendous attention due to their unique properties, such as hydrophilicity, excellent conductivity, efficient photothermal conversion, excellent biocompatibility, and so on. Recently, MXene-based stimuli-responsive hydrogels have emerged as a novel class of smart soft materials by combining MXenes with three-dimensional (3D) hydrogel networks with excellent biocompatibility, tissue-like mechanical features and stimuli-responsiveness. MXene-based hydrogels that can respond to stimuli such as strain/pressure, light, and other physicochemical stimuli have been successfully developed and have shown great promise in various applications, such as sensing, actuation, solar steam generation and biomedical applications. This review summarizes the preparation of MXene-based hydrogels and different types of stimuli-responsive MXene-based hydrogels developed so far, as well as their applications in sensors, biomedicine, actuators, solar steam generation, and so on. Finally, the main challenges and future prospects of these novel smart soft materials are discussed.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.