单三层 MXenes 可实现动力学增强型高能量密度锂离子电容器

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Junfeng Huang, Haitao Zhang*, Yongxiang Huang, Shenao Liu, Yuanxiao Qu, Yanting Xie, Xinglin Jiang, Yanan Zhao, Haitao Hu, Weiqing Yang and Zhengyou He, 
{"title":"单三层 MXenes 可实现动力学增强型高能量密度锂离子电容器","authors":"Junfeng Huang,&nbsp;Haitao Zhang*,&nbsp;Yongxiang Huang,&nbsp;Shenao Liu,&nbsp;Yuanxiao Qu,&nbsp;Yanting Xie,&nbsp;Xinglin Jiang,&nbsp;Yanan Zhao,&nbsp;Haitao Hu,&nbsp;Weiqing Yang and Zhengyou He,&nbsp;","doi":"10.1021/acsenergylett.3c02596","DOIUrl":null,"url":null,"abstract":"<p >A dual faradaic lithium-ion capacitor (LIC) promises high energy density but commonly suffers from low-power characteristics. The reason causing this deficiency is attributed to bulk-phase mass-transfer-induced sluggish dynamics, especially in the anode. Two-dimensional MXenes are promising to solve this issue because of their open structure and low ion-migration energy barrier. However, the self-stacking phenomenon of MXenes greatly diluted these advantages. Here we develop a biothermochemistry method to produce single-to-trilayer Nb<sub>2</sub>C and Ti<sub>3</sub>C<sub>2</sub> MXenes with a high ratio of &gt;95%. The optimized Nb<sub>2</sub>C MXene with wider ion transport channels and a larger electrode/electrolyte contact area facilitates lower diffusion resistance and a higher diffusion coefficient. When assembled with a LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM) cathode, dual faradaic Nb<sub>2</sub>C|LiPF<sub>6</sub>|NCM LIC delivers simultaneously a high energy density of 107 Wh kg<sup>–1</sup> and a power density of 870 W kg<sup>–1</sup>. A 300 mAh soft-packaged Nb<sub>2</sub>C|LiPF<sub>6</sub>|NCM LIC drives a toy racing car over 400 m and still works even after bending-cutting-needling processes.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 2","pages":"636–643"},"PeriodicalIF":18.2000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-to-Trilayer MXenes Enabling Kinetically Enhanced High-Energy-Density Li-Ion Capacitors\",\"authors\":\"Junfeng Huang,&nbsp;Haitao Zhang*,&nbsp;Yongxiang Huang,&nbsp;Shenao Liu,&nbsp;Yuanxiao Qu,&nbsp;Yanting Xie,&nbsp;Xinglin Jiang,&nbsp;Yanan Zhao,&nbsp;Haitao Hu,&nbsp;Weiqing Yang and Zhengyou He,&nbsp;\",\"doi\":\"10.1021/acsenergylett.3c02596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A dual faradaic lithium-ion capacitor (LIC) promises high energy density but commonly suffers from low-power characteristics. The reason causing this deficiency is attributed to bulk-phase mass-transfer-induced sluggish dynamics, especially in the anode. Two-dimensional MXenes are promising to solve this issue because of their open structure and low ion-migration energy barrier. However, the self-stacking phenomenon of MXenes greatly diluted these advantages. Here we develop a biothermochemistry method to produce single-to-trilayer Nb<sub>2</sub>C and Ti<sub>3</sub>C<sub>2</sub> MXenes with a high ratio of &gt;95%. The optimized Nb<sub>2</sub>C MXene with wider ion transport channels and a larger electrode/electrolyte contact area facilitates lower diffusion resistance and a higher diffusion coefficient. When assembled with a LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM) cathode, dual faradaic Nb<sub>2</sub>C|LiPF<sub>6</sub>|NCM LIC delivers simultaneously a high energy density of 107 Wh kg<sup>–1</sup> and a power density of 870 W kg<sup>–1</sup>. A 300 mAh soft-packaged Nb<sub>2</sub>C|LiPF<sub>6</sub>|NCM LIC drives a toy racing car over 400 m and still works even after bending-cutting-needling processes.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"9 2\",\"pages\":\"636–643\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.3c02596\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.3c02596","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

双法拉第锂离子电容器(LIC)具有高能量密度,但通常具有低功率特性。造成这种缺陷的原因在于体相传质引起的动力学迟缓,尤其是在阳极。二维 MXenes 因其开放式结构和较低的离子迁移能垒而有望解决这一问题。然而,MXenes 的自堆积现象大大削弱了这些优势。在此,我们开发了一种生物热化学方法,制备出单层到三层的 Nb2C 和 Ti3C2 MXenes,其比例高达 95%。优化后的 Nb2C MXene 具有更宽的离子传输通道和更大的电极/电解质接触面积,有利于降低扩散阻力和提高扩散系数。当与 LiNi0.8Co0.1Mn0.1O2(NCM)阴极组装时,双远红外 Nb2C|LiPF6|NCM LIC 可同时提供 107 Wh kg-1 的高能量密度和 870 W kg-1 的功率密度。300 mAh 的软包装 Nb2C|LiPF6|NCM LIC 可驱动玩具赛车行驶 400 米以上,即使经过弯曲切割-针刺过程后仍可正常工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Single-to-Trilayer MXenes Enabling Kinetically Enhanced High-Energy-Density Li-Ion Capacitors

Single-to-Trilayer MXenes Enabling Kinetically Enhanced High-Energy-Density Li-Ion Capacitors

Single-to-Trilayer MXenes Enabling Kinetically Enhanced High-Energy-Density Li-Ion Capacitors

A dual faradaic lithium-ion capacitor (LIC) promises high energy density but commonly suffers from low-power characteristics. The reason causing this deficiency is attributed to bulk-phase mass-transfer-induced sluggish dynamics, especially in the anode. Two-dimensional MXenes are promising to solve this issue because of their open structure and low ion-migration energy barrier. However, the self-stacking phenomenon of MXenes greatly diluted these advantages. Here we develop a biothermochemistry method to produce single-to-trilayer Nb2C and Ti3C2 MXenes with a high ratio of >95%. The optimized Nb2C MXene with wider ion transport channels and a larger electrode/electrolyte contact area facilitates lower diffusion resistance and a higher diffusion coefficient. When assembled with a LiNi0.8Co0.1Mn0.1O2 (NCM) cathode, dual faradaic Nb2C|LiPF6|NCM LIC delivers simultaneously a high energy density of 107 Wh kg–1 and a power density of 870 W kg–1. A 300 mAh soft-packaged Nb2C|LiPF6|NCM LIC drives a toy racing car over 400 m and still works even after bending-cutting-needling processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信