Aditya Subramani Murugan, Gijeong Noh, Hayoung Jung, Eunsik Kim, Kyongwon Kim, Heecheon You, Boubakeur Boufama
{"title":"优化基于计算机视觉的人体工程学评估:对相机位置和单目三维姿态模型的敏感性。","authors":"Aditya Subramani Murugan, Gijeong Noh, Hayoung Jung, Eunsik Kim, Kyongwon Kim, Heecheon You, Boubakeur Boufama","doi":"10.1080/00140139.2024.2304578","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous computer vision algorithms have been developed to automate posture analysis and enhance the efficiency and accuracy of ergonomic evaluations. However, the most effective algorithm for conducting ergonomic assessments remains uncertain. Therefore, the aim of this study was to identify the optimal camera position and monocular 3D pose model that would facilitate precise and efficient ergonomic evaluations. We evaluated and compared four currently available computer vision algorithms: Mediapipe BlazePose, VideoPose3D, 3D-pose-baseline, and PSTMO to determine the most suitable model for conducting ergonomic assessments. Based on the findings, the side camera position yielded the lowest Mean Absolute Error (MAE) across static, dynamic, and combined tasks. This positioning proved to be the most reliable for ergonomic assessments. Additionally, VP3D_FB demonstrated superior performance among evaluated models.<b>Practitioner Summary:</b> This study aimed to determine the most effective computer vision algorithm and camera position for precise and efficient ergonomic evaluations. Evaluating four algorithms, we found that the side camera position with VideoPose3D yielded the lowest Mean Absolute Error (MAE), ensuring precise and efficient evaluations.</p>","PeriodicalId":50503,"journal":{"name":"Ergonomics","volume":" ","pages":"120-137"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimising computer vision-based ergonomic assessments: sensitivity to camera position and monocular 3D pose model.\",\"authors\":\"Aditya Subramani Murugan, Gijeong Noh, Hayoung Jung, Eunsik Kim, Kyongwon Kim, Heecheon You, Boubakeur Boufama\",\"doi\":\"10.1080/00140139.2024.2304578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous computer vision algorithms have been developed to automate posture analysis and enhance the efficiency and accuracy of ergonomic evaluations. However, the most effective algorithm for conducting ergonomic assessments remains uncertain. Therefore, the aim of this study was to identify the optimal camera position and monocular 3D pose model that would facilitate precise and efficient ergonomic evaluations. We evaluated and compared four currently available computer vision algorithms: Mediapipe BlazePose, VideoPose3D, 3D-pose-baseline, and PSTMO to determine the most suitable model for conducting ergonomic assessments. Based on the findings, the side camera position yielded the lowest Mean Absolute Error (MAE) across static, dynamic, and combined tasks. This positioning proved to be the most reliable for ergonomic assessments. Additionally, VP3D_FB demonstrated superior performance among evaluated models.<b>Practitioner Summary:</b> This study aimed to determine the most effective computer vision algorithm and camera position for precise and efficient ergonomic evaluations. Evaluating four algorithms, we found that the side camera position with VideoPose3D yielded the lowest Mean Absolute Error (MAE), ensuring precise and efficient evaluations.</p>\",\"PeriodicalId\":50503,\"journal\":{\"name\":\"Ergonomics\",\"volume\":\" \",\"pages\":\"120-137\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergonomics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00140139.2024.2304578\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2024.2304578","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Optimising computer vision-based ergonomic assessments: sensitivity to camera position and monocular 3D pose model.
Numerous computer vision algorithms have been developed to automate posture analysis and enhance the efficiency and accuracy of ergonomic evaluations. However, the most effective algorithm for conducting ergonomic assessments remains uncertain. Therefore, the aim of this study was to identify the optimal camera position and monocular 3D pose model that would facilitate precise and efficient ergonomic evaluations. We evaluated and compared four currently available computer vision algorithms: Mediapipe BlazePose, VideoPose3D, 3D-pose-baseline, and PSTMO to determine the most suitable model for conducting ergonomic assessments. Based on the findings, the side camera position yielded the lowest Mean Absolute Error (MAE) across static, dynamic, and combined tasks. This positioning proved to be the most reliable for ergonomic assessments. Additionally, VP3D_FB demonstrated superior performance among evaluated models.Practitioner Summary: This study aimed to determine the most effective computer vision algorithm and camera position for precise and efficient ergonomic evaluations. Evaluating four algorithms, we found that the side camera position with VideoPose3D yielded the lowest Mean Absolute Error (MAE), ensuring precise and efficient evaluations.
期刊介绍:
Ergonomics, also known as human factors, is the scientific discipline that seeks to understand and improve human interactions with products, equipment, environments and systems. Drawing upon human biology, psychology, engineering and design, Ergonomics aims to develop and apply knowledge and techniques to optimise system performance, whilst protecting the health, safety and well-being of individuals involved. The attention of ergonomics extends across work, leisure and other aspects of our daily lives.
The journal Ergonomics is an international refereed publication, with a 60 year tradition of disseminating high quality research. Original submissions, both theoretical and applied, are invited from across the subject, including physical, cognitive, organisational and environmental ergonomics. Papers reporting the findings of research from cognate disciplines are also welcome, where these contribute to understanding equipment, tasks, jobs, systems and environments and the corresponding needs, abilities and limitations of people.
All published research articles in this journal have undergone rigorous peer review, based on initial editor screening and anonymous refereeing by independent expert referees.