{"title":"基于计算机视觉的生物力学模型用于物理工作量估算的系统性文献综述。","authors":"Darlington Egeonu, Bochen Jia","doi":"10.1080/00140139.2024.2308705","DOIUrl":null,"url":null,"abstract":"<p><p>Ergonomic risks, driven by strenuous physical demands in complex work settings, are prevalent across industries. Addressing these challenges through detailed assessment and effective interventions enhances safety and employee well-being. Proper and timely measurement of physical workloads is the initial step towards holistic ergonomic control. This study comprehensively explores existing computer vision-based biomechanical analysis methods for workload assessment, assessing their performance against traditional techniques, and categorising them for easier use. Recent strides in artificial intelligence have revolutionised workload assessment, especially in realistic work settings where conventional methods fall short. However, understanding the accuracy, characteristics, and practicality of computer vision-based methods versus traditional approaches remains limited. To bridge this knowledge gap, a literature review along with a meta-analysis was completed in this study to illuminate model accuracy, advantages, and challenges, offering valuable insights for refined technology implementation in diverse work environments.</p>","PeriodicalId":50503,"journal":{"name":"Ergonomics","volume":" ","pages":"139-162"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic literature review of computer vision-based biomechanical models for physical workload estimation.\",\"authors\":\"Darlington Egeonu, Bochen Jia\",\"doi\":\"10.1080/00140139.2024.2308705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ergonomic risks, driven by strenuous physical demands in complex work settings, are prevalent across industries. Addressing these challenges through detailed assessment and effective interventions enhances safety and employee well-being. Proper and timely measurement of physical workloads is the initial step towards holistic ergonomic control. This study comprehensively explores existing computer vision-based biomechanical analysis methods for workload assessment, assessing their performance against traditional techniques, and categorising them for easier use. Recent strides in artificial intelligence have revolutionised workload assessment, especially in realistic work settings where conventional methods fall short. However, understanding the accuracy, characteristics, and practicality of computer vision-based methods versus traditional approaches remains limited. To bridge this knowledge gap, a literature review along with a meta-analysis was completed in this study to illuminate model accuracy, advantages, and challenges, offering valuable insights for refined technology implementation in diverse work environments.</p>\",\"PeriodicalId\":50503,\"journal\":{\"name\":\"Ergonomics\",\"volume\":\" \",\"pages\":\"139-162\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergonomics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00140139.2024.2308705\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2024.2308705","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A systematic literature review of computer vision-based biomechanical models for physical workload estimation.
Ergonomic risks, driven by strenuous physical demands in complex work settings, are prevalent across industries. Addressing these challenges through detailed assessment and effective interventions enhances safety and employee well-being. Proper and timely measurement of physical workloads is the initial step towards holistic ergonomic control. This study comprehensively explores existing computer vision-based biomechanical analysis methods for workload assessment, assessing their performance against traditional techniques, and categorising them for easier use. Recent strides in artificial intelligence have revolutionised workload assessment, especially in realistic work settings where conventional methods fall short. However, understanding the accuracy, characteristics, and practicality of computer vision-based methods versus traditional approaches remains limited. To bridge this knowledge gap, a literature review along with a meta-analysis was completed in this study to illuminate model accuracy, advantages, and challenges, offering valuable insights for refined technology implementation in diverse work environments.
期刊介绍:
Ergonomics, also known as human factors, is the scientific discipline that seeks to understand and improve human interactions with products, equipment, environments and systems. Drawing upon human biology, psychology, engineering and design, Ergonomics aims to develop and apply knowledge and techniques to optimise system performance, whilst protecting the health, safety and well-being of individuals involved. The attention of ergonomics extends across work, leisure and other aspects of our daily lives.
The journal Ergonomics is an international refereed publication, with a 60 year tradition of disseminating high quality research. Original submissions, both theoretical and applied, are invited from across the subject, including physical, cognitive, organisational and environmental ergonomics. Papers reporting the findings of research from cognate disciplines are also welcome, where these contribute to understanding equipment, tasks, jobs, systems and environments and the corresponding needs, abilities and limitations of people.
All published research articles in this journal have undergone rigorous peer review, based on initial editor screening and anonymous refereeing by independent expert referees.