NeoMUST:准确高效的新抗原呈现多任务学习模型。

IF 3.3 2区 生物学 Q1 BIOLOGY
Life Science Alliance Pub Date : 2024-01-30 Print Date: 2024-04-01 DOI:10.26508/lsa.202302255
Wang Ma, Jiawei Zhang, Hui Yao
{"title":"NeoMUST:准确高效的新抗原呈现多任务学习模型。","authors":"Wang Ma, Jiawei Zhang, Hui Yao","doi":"10.26508/lsa.202302255","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of neoantigens is important for advancing cancer immunotherapies. This study introduces Neoantigen MUlti-taSk Tower (NeoMUST), a model employing multi-task learning to effectively capture task-specific information across related tasks. Our results show that NeoMUST rivals existing algorithms in predicting the presentation of neoantigens via MHC-I molecules, while demonstrating a significantly shorter training time for enhanced computational efficiency. The use of multi-task learning enables NeoMUST to leverage shared knowledge and task dependencies, leading to improved performance metrics and a significant reduction in the training time. NeoMUST, implemented in Python, is freely accessible at the GitHub repository. Our model will facilitate neoantigen prediction and empower the development of effective cancer immunotherapeutic approaches.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10828515/pdf/","citationCount":"0","resultStr":"{\"title\":\"NeoMUST: an accurate and efficient multi-task learning model for neoantigen presentation.\",\"authors\":\"Wang Ma, Jiawei Zhang, Hui Yao\",\"doi\":\"10.26508/lsa.202302255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate identification of neoantigens is important for advancing cancer immunotherapies. This study introduces Neoantigen MUlti-taSk Tower (NeoMUST), a model employing multi-task learning to effectively capture task-specific information across related tasks. Our results show that NeoMUST rivals existing algorithms in predicting the presentation of neoantigens via MHC-I molecules, while demonstrating a significantly shorter training time for enhanced computational efficiency. The use of multi-task learning enables NeoMUST to leverage shared knowledge and task dependencies, leading to improved performance metrics and a significant reduction in the training time. NeoMUST, implemented in Python, is freely accessible at the GitHub repository. Our model will facilitate neoantigen prediction and empower the development of effective cancer immunotherapeutic approaches.</p>\",\"PeriodicalId\":18081,\"journal\":{\"name\":\"Life Science Alliance\",\"volume\":\"7 4\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10828515/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Science Alliance\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26508/lsa.202302255\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202302255","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

准确识别新抗原对于推进癌症免疫疗法非常重要。本研究介绍了新抗原MUlti-taSk塔(NeoMUST),这是一种采用多任务学习的模型,能有效捕捉相关任务中的特定任务信息。我们的研究结果表明,NeoMUST 在通过 MHC-I 分子预测新抗原的呈现方面可与现有算法相媲美,同时它还大大缩短了训练时间,提高了计算效率。多任务学习的使用使 NeoMUST 能够利用共享知识和任务依赖性,从而提高性能指标并显著缩短训练时间。NeoMUST 使用 Python 实现,可在 GitHub 存储库中免费访问。我们的模型将为新抗原预测提供便利,并有助于开发有效的癌症免疫治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NeoMUST: an accurate and efficient multi-task learning model for neoantigen presentation.

Accurate identification of neoantigens is important for advancing cancer immunotherapies. This study introduces Neoantigen MUlti-taSk Tower (NeoMUST), a model employing multi-task learning to effectively capture task-specific information across related tasks. Our results show that NeoMUST rivals existing algorithms in predicting the presentation of neoantigens via MHC-I molecules, while demonstrating a significantly shorter training time for enhanced computational efficiency. The use of multi-task learning enables NeoMUST to leverage shared knowledge and task dependencies, leading to improved performance metrics and a significant reduction in the training time. NeoMUST, implemented in Python, is freely accessible at the GitHub repository. Our model will facilitate neoantigen prediction and empower the development of effective cancer immunotherapeutic approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Life Science Alliance
Life Science Alliance Agricultural and Biological Sciences-Plant Science
CiteScore
5.80
自引率
2.30%
发文量
241
审稿时长
10 weeks
期刊介绍: Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信