{"title":"对潮间带繁殖的海螺进行驯化可保护胚胎免受瞬时高热的致命影响。","authors":"Morgan Q. Goulding","doi":"10.1002/jez.b.23240","DOIUrl":null,"url":null,"abstract":"<p>Embryos of <i>Ilyanassa obsoleta</i> (from Massachusetts and Florida) and <i>Phrontis vibex</i> (from Florida) were exposed to temperatures from 33 to 37°C. In both species, very young embryos are especially sensitive to thermal stress. Brief early heat shock did not disturb spiral cleavage geometry but led to variable, typically severe defects in larval morphogenesis and tissue differentiation. In <i>Ilyanassa</i> but not <i>P. vibex</i>, early heat shock resulted in immediate slowing or arrest of interphase progression during early cleavage. This reversible arrest was correlated with improved prognosis for larval development and (in Massachusetts snails, at least) depended on parental acclimation to warm temperature (~25.5°C). Embryos from Massachusetts snails housed at lower temperature (16°C) exhibited cytokinesis failure when briefly incubated at 33°C during early cleavage, and tissue differentiation failure during incubation at 33°C begun at later stages. This preliminary study reveals a case in which stress-conditioned parents may endow embryos with protection against potentially lethal thermal stress during the most vulnerable stages of life.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"342 2","pages":"101-105"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acclimation of intertidally reproducing sea-snails protects embryos from lethal effects of transient hyperthermia\",\"authors\":\"Morgan Q. Goulding\",\"doi\":\"10.1002/jez.b.23240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Embryos of <i>Ilyanassa obsoleta</i> (from Massachusetts and Florida) and <i>Phrontis vibex</i> (from Florida) were exposed to temperatures from 33 to 37°C. In both species, very young embryos are especially sensitive to thermal stress. Brief early heat shock did not disturb spiral cleavage geometry but led to variable, typically severe defects in larval morphogenesis and tissue differentiation. In <i>Ilyanassa</i> but not <i>P. vibex</i>, early heat shock resulted in immediate slowing or arrest of interphase progression during early cleavage. This reversible arrest was correlated with improved prognosis for larval development and (in Massachusetts snails, at least) depended on parental acclimation to warm temperature (~25.5°C). Embryos from Massachusetts snails housed at lower temperature (16°C) exhibited cytokinesis failure when briefly incubated at 33°C during early cleavage, and tissue differentiation failure during incubation at 33°C begun at later stages. This preliminary study reveals a case in which stress-conditioned parents may endow embryos with protection against potentially lethal thermal stress during the most vulnerable stages of life.</p>\",\"PeriodicalId\":15682,\"journal\":{\"name\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"volume\":\"342 2\",\"pages\":\"101-105\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23240\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23240","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Acclimation of intertidally reproducing sea-snails protects embryos from lethal effects of transient hyperthermia
Embryos of Ilyanassa obsoleta (from Massachusetts and Florida) and Phrontis vibex (from Florida) were exposed to temperatures from 33 to 37°C. In both species, very young embryos are especially sensitive to thermal stress. Brief early heat shock did not disturb spiral cleavage geometry but led to variable, typically severe defects in larval morphogenesis and tissue differentiation. In Ilyanassa but not P. vibex, early heat shock resulted in immediate slowing or arrest of interphase progression during early cleavage. This reversible arrest was correlated with improved prognosis for larval development and (in Massachusetts snails, at least) depended on parental acclimation to warm temperature (~25.5°C). Embryos from Massachusetts snails housed at lower temperature (16°C) exhibited cytokinesis failure when briefly incubated at 33°C during early cleavage, and tissue differentiation failure during incubation at 33°C begun at later stages. This preliminary study reveals a case in which stress-conditioned parents may endow embryos with protection against potentially lethal thermal stress during the most vulnerable stages of life.
期刊介绍:
Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms.
The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB.
We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.