Francisca B Stefany Aires do Nascimento, Lívia Gurgel do Amaral Valente Sá, João B de Andrade Neto, Lisandra Juvêncio da Silva, Daniel Sampaio Rodrigues, Vitória P de Farias Cabral, Amanda Dias Barbosa, Lara E Almeida Moreira, Camille R Braga Vasconcelos, Bruno Coêlho Cavalcanti, Maria E França Rios, Jacilene Silva, Emmanuel Silva Marinho, Helcio Silva Dos Santos, Jacó Rl de Mesquita, Marina Duarte Pinto Lobo, Manoel Odorico de Moraes, Hélio V Nobre Júnior, Cecília Rocha da Silva
{"title":"肼屈嗪对耐甲氧西林和甲氧西林敏感金黄色葡萄球菌的抗菌活性。","authors":"Francisca B Stefany Aires do Nascimento, Lívia Gurgel do Amaral Valente Sá, João B de Andrade Neto, Lisandra Juvêncio da Silva, Daniel Sampaio Rodrigues, Vitória P de Farias Cabral, Amanda Dias Barbosa, Lara E Almeida Moreira, Camille R Braga Vasconcelos, Bruno Coêlho Cavalcanti, Maria E França Rios, Jacilene Silva, Emmanuel Silva Marinho, Helcio Silva Dos Santos, Jacó Rl de Mesquita, Marina Duarte Pinto Lobo, Manoel Odorico de Moraes, Hélio V Nobre Júnior, Cecília Rocha da Silva","doi":"10.2217/fmb-2023-0160","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> <i>Staphylococcus aureus</i> is a human pathogen responsible for high mortality rates. The development of new antimicrobials is urgent. <b>Materials & methods:</b> The authors evaluated the activity of hydralazine along with its synergism with other drugs and action on biofilms. With regard to action mechanisms, the authors evaluated cell viability, DNA damage and molecular docking. <b>Results:</b> MIC and minimum bactericidal concentration values ranged from 128 to 2048 μg/ml. There was synergism with oxacillin (50%) and vancomycin (25%). Hydralazine reduced the viability of biofilms by 50%. After exposure to hydralazine 2× MIC, 58.78% of the cells were unviable, 62.07% were TUNEL positive and 27.03% presented damage in the comet assay (p < 0.05). Hydralazine showed affinity for DNA gyrase and TyrRS. <b>Conclusion:</b> Hydralazine is a potential antibacterial.</p>","PeriodicalId":12773,"journal":{"name":"Future microbiology","volume":" ","pages":"91-106"},"PeriodicalIF":2.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial activity of hydralazine against methicillin-resistant and methicillin-susceptible <i>Staphylococcus aureus</i>.\",\"authors\":\"Francisca B Stefany Aires do Nascimento, Lívia Gurgel do Amaral Valente Sá, João B de Andrade Neto, Lisandra Juvêncio da Silva, Daniel Sampaio Rodrigues, Vitória P de Farias Cabral, Amanda Dias Barbosa, Lara E Almeida Moreira, Camille R Braga Vasconcelos, Bruno Coêlho Cavalcanti, Maria E França Rios, Jacilene Silva, Emmanuel Silva Marinho, Helcio Silva Dos Santos, Jacó Rl de Mesquita, Marina Duarte Pinto Lobo, Manoel Odorico de Moraes, Hélio V Nobre Júnior, Cecília Rocha da Silva\",\"doi\":\"10.2217/fmb-2023-0160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> <i>Staphylococcus aureus</i> is a human pathogen responsible for high mortality rates. The development of new antimicrobials is urgent. <b>Materials & methods:</b> The authors evaluated the activity of hydralazine along with its synergism with other drugs and action on biofilms. With regard to action mechanisms, the authors evaluated cell viability, DNA damage and molecular docking. <b>Results:</b> MIC and minimum bactericidal concentration values ranged from 128 to 2048 μg/ml. There was synergism with oxacillin (50%) and vancomycin (25%). Hydralazine reduced the viability of biofilms by 50%. After exposure to hydralazine 2× MIC, 58.78% of the cells were unviable, 62.07% were TUNEL positive and 27.03% presented damage in the comet assay (p < 0.05). Hydralazine showed affinity for DNA gyrase and TyrRS. <b>Conclusion:</b> Hydralazine is a potential antibacterial.</p>\",\"PeriodicalId\":12773,\"journal\":{\"name\":\"Future microbiology\",\"volume\":\" \",\"pages\":\"91-106\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2217/fmb-2023-0160\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2217/fmb-2023-0160","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Antimicrobial activity of hydralazine against methicillin-resistant and methicillin-susceptible Staphylococcus aureus.
Background:Staphylococcus aureus is a human pathogen responsible for high mortality rates. The development of new antimicrobials is urgent. Materials & methods: The authors evaluated the activity of hydralazine along with its synergism with other drugs and action on biofilms. With regard to action mechanisms, the authors evaluated cell viability, DNA damage and molecular docking. Results: MIC and minimum bactericidal concentration values ranged from 128 to 2048 μg/ml. There was synergism with oxacillin (50%) and vancomycin (25%). Hydralazine reduced the viability of biofilms by 50%. After exposure to hydralazine 2× MIC, 58.78% of the cells were unviable, 62.07% were TUNEL positive and 27.03% presented damage in the comet assay (p < 0.05). Hydralazine showed affinity for DNA gyrase and TyrRS. Conclusion: Hydralazine is a potential antibacterial.
期刊介绍:
Future Microbiology delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for this increasingly important and vast area of research.