Seong Eun Jin, Mee-Young Lee, Hyekyung Ha, Hyeun-Kyoo Shin, Chang-Seob Seo
{"title":"Gamisoyo-san 的安全性评估:遗传毒性、急性毒性和对药物代谢酶的影响。","authors":"Seong Eun Jin, Mee-Young Lee, Hyekyung Ha, Hyeun-Kyoo Shin, Chang-Seob Seo","doi":"10.1080/01480545.2024.2308830","DOIUrl":null,"url":null,"abstract":"<p><p><i>Gamisoyo-san</i> is an herbal formula widely used to treat psychological issues, menopausal symptoms, and dysmenorrhea. However, there is insufficient information on its safety profile. This study aimed to confirm the genotoxic and acute toxic potential of <i>Gamisoyo-san</i>. We performed a battery of tests, which included a bacterial reverse mutation test (Ames test) using five bacterial strains, an <i>in vitro</i> chromosomal aberration test using Chinese hamster lung (CHL) cells, an <i>in vivo</i> micronucleus test in mice, and human Cytochrome P450 (CYP450) and UDP-glucuronosyltransferase (UGT) assays. In the acute toxicity study, male and female rats were orally administered <i>Gamisoyo-san</i> 1000, 2000, or 5000 mg/kg and observed for 14 days. The activities of human CYP450s and UGTs were evaluated using recombinant baculosomes. <i>Gamisoyo-san</i> showed no signs of genotoxicity in the five bacterial strains, CHL cells, or mouse bone marrow cells. The acute toxicity test showed that the median lethal dose (LD<sub>50</sub>) of <i>Gamisoyo-san</i> was greater than 5000 mg/kg in rats. <i>Gamisoyo-san</i> inhibited the activities of CYP1A2, CYP2C19, and UGT1A1. In conclusion, <i>Gamisoyo-san</i> may not exert severe toxicological events or genotoxic effects at doses up to 5000 mg/kg in rats.</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"866-875"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safety evaluation of <i>Gamisoyo-san</i>: genotoxicity, acute toxicity, and influence on drug-metabolizing enzymes.\",\"authors\":\"Seong Eun Jin, Mee-Young Lee, Hyekyung Ha, Hyeun-Kyoo Shin, Chang-Seob Seo\",\"doi\":\"10.1080/01480545.2024.2308830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Gamisoyo-san</i> is an herbal formula widely used to treat psychological issues, menopausal symptoms, and dysmenorrhea. However, there is insufficient information on its safety profile. This study aimed to confirm the genotoxic and acute toxic potential of <i>Gamisoyo-san</i>. We performed a battery of tests, which included a bacterial reverse mutation test (Ames test) using five bacterial strains, an <i>in vitro</i> chromosomal aberration test using Chinese hamster lung (CHL) cells, an <i>in vivo</i> micronucleus test in mice, and human Cytochrome P450 (CYP450) and UDP-glucuronosyltransferase (UGT) assays. In the acute toxicity study, male and female rats were orally administered <i>Gamisoyo-san</i> 1000, 2000, or 5000 mg/kg and observed for 14 days. The activities of human CYP450s and UGTs were evaluated using recombinant baculosomes. <i>Gamisoyo-san</i> showed no signs of genotoxicity in the five bacterial strains, CHL cells, or mouse bone marrow cells. The acute toxicity test showed that the median lethal dose (LD<sub>50</sub>) of <i>Gamisoyo-san</i> was greater than 5000 mg/kg in rats. <i>Gamisoyo-san</i> inhibited the activities of CYP1A2, CYP2C19, and UGT1A1. In conclusion, <i>Gamisoyo-san</i> may not exert severe toxicological events or genotoxic effects at doses up to 5000 mg/kg in rats.</p>\",\"PeriodicalId\":11333,\"journal\":{\"name\":\"Drug and Chemical Toxicology\",\"volume\":\" \",\"pages\":\"866-875\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug and Chemical Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01480545.2024.2308830\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2024.2308830","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Safety evaluation of Gamisoyo-san: genotoxicity, acute toxicity, and influence on drug-metabolizing enzymes.
Gamisoyo-san is an herbal formula widely used to treat psychological issues, menopausal symptoms, and dysmenorrhea. However, there is insufficient information on its safety profile. This study aimed to confirm the genotoxic and acute toxic potential of Gamisoyo-san. We performed a battery of tests, which included a bacterial reverse mutation test (Ames test) using five bacterial strains, an in vitro chromosomal aberration test using Chinese hamster lung (CHL) cells, an in vivo micronucleus test in mice, and human Cytochrome P450 (CYP450) and UDP-glucuronosyltransferase (UGT) assays. In the acute toxicity study, male and female rats were orally administered Gamisoyo-san 1000, 2000, or 5000 mg/kg and observed for 14 days. The activities of human CYP450s and UGTs were evaluated using recombinant baculosomes. Gamisoyo-san showed no signs of genotoxicity in the five bacterial strains, CHL cells, or mouse bone marrow cells. The acute toxicity test showed that the median lethal dose (LD50) of Gamisoyo-san was greater than 5000 mg/kg in rats. Gamisoyo-san inhibited the activities of CYP1A2, CYP2C19, and UGT1A1. In conclusion, Gamisoyo-san may not exert severe toxicological events or genotoxic effects at doses up to 5000 mg/kg in rats.
期刊介绍:
Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal.
Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.