Abrar Hazoor , Alberto Terrafino , Leandro L. Di Stasi , Marco Bassani
{"title":"能见度技术的智能速度适应会影响驾驶员在视线受限的弯道上的速度选择","authors":"Abrar Hazoor , Alberto Terrafino , Leandro L. Di Stasi , Marco Bassani","doi":"10.1016/j.jtte.2023.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>Sight obstructions along road curves can lead to a crash if the driver is not able to stop the vehicle in time. This is a particular issue along curves with limited available sight, where speed management is necessary to avoid unsafe situations (e.g., driving off the road or invading the other traffic lane). To solve this issue, we proposed a novel intelligent speed adaptation (ISA) system for visibility, called V-ISA (intelligent speed adaptation for visibility). It estimates the real-time safe speed limits based on the prevailing sight conditions. V-ISA comes with three variants with specific feedback modalities (1) visual and (2) auditory information, and (3) direct intervention to assume control over the vehicle speed.</p><p>Here, we investigated the efficiency of each of the three V-ISA variants on driving speed choice and lateral behavioural response along road curves with limited and unsafe available sight distances, using a driving simulator. We also considered curve road geometry (curve direction: rightward vs. leftward). Sixty active drivers were recruited for the study. While half of them (experimental group) tested the three V-ISA variants (and a V-ISA off condition), the other half always drove with the V-ISA off (validation group). We used a linear mixed-effect model to evaluate the influence of V-ISA on driver behaviour.</p><p>All V-ISA variants were efficient at reducing speeds at entrance points, with no discernible negative impact on driver lateral behaviour. On rightward curves, the V-ISA intervening variant appeared to be the most effective at adapting to sight limitations. Results of the current study implies that V-ISA might assist drivers to adjust their operating speed as per prevailing sight conditions and, consequently, establishes safer driving conditions.</p></div>","PeriodicalId":47239,"journal":{"name":"Journal of Traffic and Transportation Engineering-English Edition","volume":"11 1","pages":"Pages 16-27"},"PeriodicalIF":7.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095756424000035/pdfft?md5=7657a70b5ff699ba522039bd08f09729&pid=1-s2.0-S2095756424000035-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Intelligent speed adaptation for visibility technology affects drivers’ speed selection along curves with sight limitations\",\"authors\":\"Abrar Hazoor , Alberto Terrafino , Leandro L. Di Stasi , Marco Bassani\",\"doi\":\"10.1016/j.jtte.2023.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sight obstructions along road curves can lead to a crash if the driver is not able to stop the vehicle in time. This is a particular issue along curves with limited available sight, where speed management is necessary to avoid unsafe situations (e.g., driving off the road or invading the other traffic lane). To solve this issue, we proposed a novel intelligent speed adaptation (ISA) system for visibility, called V-ISA (intelligent speed adaptation for visibility). It estimates the real-time safe speed limits based on the prevailing sight conditions. V-ISA comes with three variants with specific feedback modalities (1) visual and (2) auditory information, and (3) direct intervention to assume control over the vehicle speed.</p><p>Here, we investigated the efficiency of each of the three V-ISA variants on driving speed choice and lateral behavioural response along road curves with limited and unsafe available sight distances, using a driving simulator. We also considered curve road geometry (curve direction: rightward vs. leftward). Sixty active drivers were recruited for the study. While half of them (experimental group) tested the three V-ISA variants (and a V-ISA off condition), the other half always drove with the V-ISA off (validation group). We used a linear mixed-effect model to evaluate the influence of V-ISA on driver behaviour.</p><p>All V-ISA variants were efficient at reducing speeds at entrance points, with no discernible negative impact on driver lateral behaviour. On rightward curves, the V-ISA intervening variant appeared to be the most effective at adapting to sight limitations. Results of the current study implies that V-ISA might assist drivers to adjust their operating speed as per prevailing sight conditions and, consequently, establishes safer driving conditions.</p></div>\",\"PeriodicalId\":47239,\"journal\":{\"name\":\"Journal of Traffic and Transportation Engineering-English Edition\",\"volume\":\"11 1\",\"pages\":\"Pages 16-27\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095756424000035/pdfft?md5=7657a70b5ff699ba522039bd08f09729&pid=1-s2.0-S2095756424000035-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Traffic and Transportation Engineering-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095756424000035\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Traffic and Transportation Engineering-English Edition","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095756424000035","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Intelligent speed adaptation for visibility technology affects drivers’ speed selection along curves with sight limitations
Sight obstructions along road curves can lead to a crash if the driver is not able to stop the vehicle in time. This is a particular issue along curves with limited available sight, where speed management is necessary to avoid unsafe situations (e.g., driving off the road or invading the other traffic lane). To solve this issue, we proposed a novel intelligent speed adaptation (ISA) system for visibility, called V-ISA (intelligent speed adaptation for visibility). It estimates the real-time safe speed limits based on the prevailing sight conditions. V-ISA comes with three variants with specific feedback modalities (1) visual and (2) auditory information, and (3) direct intervention to assume control over the vehicle speed.
Here, we investigated the efficiency of each of the three V-ISA variants on driving speed choice and lateral behavioural response along road curves with limited and unsafe available sight distances, using a driving simulator. We also considered curve road geometry (curve direction: rightward vs. leftward). Sixty active drivers were recruited for the study. While half of them (experimental group) tested the three V-ISA variants (and a V-ISA off condition), the other half always drove with the V-ISA off (validation group). We used a linear mixed-effect model to evaluate the influence of V-ISA on driver behaviour.
All V-ISA variants were efficient at reducing speeds at entrance points, with no discernible negative impact on driver lateral behaviour. On rightward curves, the V-ISA intervening variant appeared to be the most effective at adapting to sight limitations. Results of the current study implies that V-ISA might assist drivers to adjust their operating speed as per prevailing sight conditions and, consequently, establishes safer driving conditions.
期刊介绍:
The Journal of Traffic and Transportation Engineering (English Edition) serves as a renowned academic platform facilitating the exchange and exploration of innovative ideas in the realm of transportation. Our journal aims to foster theoretical and experimental research in transportation and welcomes the submission of exceptional peer-reviewed papers on engineering, planning, management, and information technology. We are dedicated to expediting the peer review process and ensuring timely publication of top-notch research in this field.